Semantic Domains

Publisher Summary This chapter discusses the foundations of semantic domains in an elementary way. It describes a simple class of ordered structures and discusses the idea of fixed points of continuous functions as meanings for recursive programs. The chapter discusses spaces having certain kinds of limits in which a useful fixed point existence theorem holds and describes how the theory of domains can be used in semantic specification. It also describes some of the operators and functions that are used in semantic definitions. The chapter describes a special collection of such operators, which are called power domains. It also discusses the issue of obtaining fixed points for certain operators on domains.

[1]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[2]  Dana S. Scott,et al.  Logic and programming languages , 1977, CACM.

[3]  Gérard Berry,et al.  Stable Models of Typed lambda-Calculi , 1978, ICALP.

[4]  E. Engeler Algebras and combinators , 1981 .

[5]  Michael B. Smyth,et al.  Effectively given Domains , 1977, Theor. Comput. Sci..

[6]  Gordon D. Plotkin,et al.  A Powerdomain Construction , 1976, SIAM J. Comput..

[7]  Carl A. Gunter Universal Profinite Domains , 1987, Inf. Comput..

[8]  Gordon D. Plotkin,et al.  The category-theoretic solution of recursive domain equations , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[9]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[10]  Michael B. Smyth,et al.  The Largest Cartesian Closed Category of Domains , 1983, Theor. Comput. Sci..

[11]  Dana S. Scott,et al.  Lambda Calculus: Some Models, Some Philosophy , 1980 .

[12]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[13]  Dana S. Scott,et al.  Some Ordered Sets in Computer Science , 1982 .

[14]  Carl A. Gunter The Largest First-Order-Axiomatizable Cartesian Closed Category of Domains , 1986, LICS.

[15]  José Meseguer,et al.  Order completion monads , 1983 .

[16]  A. Jung,et al.  Coherence and consistency in domains , 1990, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[17]  Michael B. Smyth Power Domains , 1978, J. Comput. Syst. Sci..

[18]  Tsutomu Kamimura,et al.  Effectively Given Spaces , 1984, Theor. Comput. Sci..

[19]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[20]  Dana S. Scott,et al.  Lectures on a Mathematical Theory of Computation , 1982 .

[21]  Michael B. Smyth,et al.  Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.

[22]  György E. Révész Rule-Based Semantics for an Extended Lambda-Calculus , 1987, MFPS.