Detecting topological variations of DNA at single-molecule level

In addition to their use in DNA sequencing, ultrathin nanopore membranes have potential applications in detecting topological variations in deoxyribonucleic acid (DNA). This is due to the fact that when topologically edited DNA molecules, driven by electrophoretic forces, translocate through a narrow orifice, transient residings of edited segments inside the orifice modulate the ionic flow. Here we utilize two programmable barcoding methods based on base-pairing, namely forming a gap in dsDNA and creating protrusion sites in ssDNA for generating a hybrid DNA complex. We integrate a discriminative noise analysis for ds and ss DNA topologies into the threshold detection, resulting in improved multi-level signal detection and consequent extraction of reliable information about topological variations. Moreover, the positional information of the barcode along the template sequence can be determined unambiguously. All methods may be further modified to detect nicks in DNA, and thereby detect DNA damage and repair sites.Ultrathin nanopore membranes have the potential for detecting topological variation in DNA. Here the authors use barcoded DNA to characterise the translocation profiles of DNA with single strand gaps.

[1]  Jingmin Jin,et al.  Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. , 2010, Nature nanotechnology.

[2]  Meni Wanunu,et al.  DNA translocation governed by interactions with solid-state nanopores. , 2008, Biophysical journal.

[3]  A. Aksimentiev,et al.  Smooth DNA transport through a narrowed pore geometry. , 2014, Biophysical journal.

[4]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Klaus Schulten,et al.  Detection and mapping of DNA methylation with 2D material nanopores , 2017, npj 2D Materials and Applications.

[6]  Ulrich F. Keyser,et al.  Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. , 2016, Nature nanotechnology.

[7]  Aleksandra Radenovic,et al.  DNA translocation through low-noise glass nanopores. , 2013, ACS nano.

[8]  M. Wanunu Nanopores: A journey towards DNA sequencing. , 2012, Physics of Life Reviews.

[9]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[10]  Georg E. Fantner,et al.  Components for high-speed atomic force microscopy optimized for low phase-lag , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[11]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[12]  A. Meller,et al.  Dynamics of polynucleotide transport through nanometre-scale pores , 2003 .

[13]  Brent S. Pedersen,et al.  Nanopore sequencing and assembly of a human genome with ultra-long reads , 2017, Nature Biotechnology.

[14]  Alexander Y. Grosberg,et al.  Electrostatic Focusing of Unlabeled DNA into Nanoscale Pores using a Salt Gradient , 2009, Nature nanotechnology.

[15]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[16]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[17]  A. Meller,et al.  Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis , 2006 .

[18]  Jean-Pierre Leburton,et al.  Electronic conductance model in constricted MoS2 with nanopores , 2016 .

[19]  A. Balan,et al.  Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. , 2013, ACS nano.

[20]  He Tian,et al.  Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. , 2016, Nature nanotechnology.

[21]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[22]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[23]  N H Dekker,et al.  Low-frequency noise in solid-state nanopores , 2009, Nanotechnology.

[24]  Cees Dekker,et al.  Modeling the conductance and DNA blockade of solid-state nanopores , 2011, Nanotechnology.

[25]  Qing Zhao,et al.  Boron Nitride Nanopores: Highly Sensitive DNA Single‐Molecule Detectors , 2013, Advanced materials.

[26]  Joshua B Edel,et al.  Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers , 2017, Nature Communications.

[27]  Dumitru Dumcenco,et al.  Identification of single nucleotides in MoS2 nanopores. , 2015, Nature nanotechnology.

[28]  Cees Dekker,et al.  Velocity of DNA during translocation through a solid-state nanopore. , 2015, Nano letters.

[29]  Jonathan D. Adams,et al.  Components for high speed atomic force microscopy. , 2006, Ultramicroscopy.

[30]  Dumitru Dumcenco,et al.  Geometrical Effect in 2D Nanopores. , 2017, Nano letters.

[31]  Li-Yu Daisy Liu,et al.  Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom. , 2015, Nano letters.

[32]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[33]  Santiago H. Andany,et al.  High-speed photothermal off-resonance atomic force microscopy reveals assembly routes of centriolar scaffold protein SAS-6 , 2018, Nature Nanotechnology.

[34]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[35]  J. Joanny,et al.  Fast DNA translocation through a solid-state nanopore. , 2004, Nano letters.

[36]  K. Schulten,et al.  Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel , 2005 .

[37]  U. Bockelmann,et al.  DNA translocation and unzipping through a nanopore: some geometrical effects. , 2010, Biophysical journal.

[38]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[39]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[40]  Y. Long,et al.  Recognizing the translocation signals of individual peptide-oligonucleotide conjugates using an α-hemolysin nanopore. , 2012, Chemical communications.

[41]  Y. Long,et al.  Measuring a frequency spectrum for single-molecule interactions with a confined nanopore. , 2018, Faraday discussions.

[42]  D. Branton,et al.  Three decades of nanopore sequencing , 2016, Nature Biotechnology.

[43]  K. Schulten,et al.  Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  N H Dekker,et al.  Noise in solid-state nanopores , 2008, Proceedings of the National Academy of Sciences.

[45]  N. Aluru,et al.  DNA base detection using a single-layer MoS2. , 2014, ACS nano.

[46]  Andre Marziali,et al.  Noise analysis and reduction in solid-state nanopores , 2007 .

[47]  Ke Liu,et al.  Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. , 2014, ACS nano.

[48]  Aleksei Aksimentiev,et al.  Slowing down DNA translocation through a nanopore in lithium chloride. , 2012, Nano letters.

[49]  C Raillon,et al.  Fast and automatic processing of multi-level events in nanopore translocation experiments. , 2012, Nanoscale.

[50]  D. Ly,et al.  Electronic barcoding of a viral gene at the single-molecule level. , 2012, Nano letters.