Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries

[1]  W. Porcher,et al.  Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model. , 2014, Physical chemistry chemical physics : PCCP.

[2]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[3]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[4]  Brian W. Sheldon,et al.  In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries. , 2014, ACS applied materials & interfaces.

[5]  Kenji Fukuda,et al.  Carbon-Coated Si as a Lithium-Ion Battery Anode Material , 2002 .

[6]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[7]  P. Moreau,et al.  The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries , 2011 .

[8]  Yi Cui,et al.  Prelithiated silicon nanowires as an anode for lithium ion batteries. , 2011, ACS nano.

[9]  Seung M. Oh,et al.  A Calculation Model to Assess Two Irreversible Capacities Evolved in Silicon Negative Electrodes , 2015 .

[10]  Raouf O. Loutfy,et al.  Comparative studies of MCMB and CC composite as anodes for lithium-ion battery systems , 2003 .

[11]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[12]  Jing-ying Xie,et al.  Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries , 2007 .

[13]  Vivek B. Shenoy,et al.  Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries , 2012 .

[14]  Hongyu Wang,et al.  Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries , 2004 .

[15]  P. Moreau,et al.  New insights into the silicon-based electrode's irreversibility along cycle life through simple gravimetric method , 2012 .

[16]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[17]  K. Edström,et al.  Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries : A Photoelectron Spectroscopy Study , 2013 .

[18]  Seung M. Oh,et al.  Passivating Ability of Surface Film Derived from Vinylene Carbonate on Tin Negative Electrode , 2011 .

[19]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[20]  Akinori Kita,et al.  Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes , 2011 .

[21]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[22]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[23]  Jianming Zheng,et al.  Reduction mechanism of fluoroethylene carbonate for stable solid–electrolyte interphase film on silicon anode. , 2014, ChemSusChem.

[24]  Liquan Chen,et al.  3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[25]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[26]  Peng Lu,et al.  Unexpected Improved Performance of ALD Coated LiCoO2/Graphite Li‐Ion Batteries , 2013 .

[27]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[28]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[29]  Seung M. Oh,et al.  Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries , 2013 .

[30]  Brett L. Lucht,et al.  Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries , 2014 .

[31]  M. Ulldemolins,et al.  Memory effect highlighting in silicon anodes for high energy density lithium-ion batteries , 2013 .

[32]  J. Tarascon,et al.  Si Electrodes for Li-Ion batteries- A new way to look at an old problem , 2008 .

[33]  Barbara Laïk,et al.  Cycling strategies for optimizing silicon nanowires performance as negative electrode for lithium battery , 2015 .

[34]  Dominique Guyomard,et al.  On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries , 2007 .

[35]  P. Das,et al.  Mechanism of interactions between CMC binder and Si single crystal facets. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[36]  Mengyun Nie,et al.  Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[37]  Wenquan Lu,et al.  Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review , 2014 .

[38]  R. Yazami,et al.  Mechanism of self-discharge in graphite–lithium anode , 2002 .

[39]  Mengyun Nie,et al.  ANODE SOLID ELECTROLYTE INTERPHASE (SEI) OF LITHIUM ION BATTERY CHARACTERIZED BY MICROSCOPY AND SPECTROSCOPY , 2013 .

[40]  Xiangyun Song,et al.  Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes , 2011, Advanced materials.

[41]  Nam-Soon Choi,et al.  Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode , 2006 .

[42]  B. Lucht,et al.  Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes , 2012 .

[43]  J. Dahn,et al.  In Situ Optical Observations of Particle Motion in Alloy Negative Electrodes for Li-Ion Batteries , 2006 .

[44]  Stijn Put,et al.  Study and modeling of the Solid Electrolyte Interphase behavior on nano-silicon anodes by Electrochemical Impedance Spectroscopy , 2014 .

[45]  H. Ghassemi,et al.  In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. , 2011, ACS nano.