S-Pb isotopes and tectono-geochemistry of the Lunong ore block, Yangla large Cu deposit, SW China: Implications for mineral exploration

[1]  Zhilong Huang,et al.  Gold and antimony metallogenic relations and ore-forming process of Qinglong Sb(Au) deposit in Youjiang basin, SW China: Sulfide trace elements and sulfur isotopes , 2021 .

[2]  Yongwen Wang,et al.  Investigation of Large-Diameter Borehole for Enhancing Permeability and Gas Extraction in Soft Coal Seam , 2020 .

[3]  Dexian Zhang,et al.  In situ trace elements and Sr isotopes in scheelite and S-Pb isotopes in sulfides from the Shiweidong W–Cu deposit, giant Dahutang ore field: Implications to the fluid evolution and ore genesis , 2020 .

[4]  Bo Li,et al.  Chemical compositions of sulfides in the porphyry Cu ores, Yangla Cu deposit, Yunnan, China: implication for ore genesis , 2020, Acta Geochimica.

[5]  Zhilong Huang,et al.  Zircon U–Pb Ages and Geochemistry of Granite Porphyries in the Yangla Cu Deposit, SW China: Constraints on Petrogenesis and Tectonic Evolution of the Jinshajiang Suture Belt , 2020 .

[6]  G. Chi,et al.  Contribution of magma mixing to the formation of porphyry-skarn mineralization in a post-collisional setting: The Machangqing Cu-Mo-(Au) deposit, Sanjiang tectonic belt, SW China , 2020 .

[7]  Bo Li,et al.  Subduction-modified mantle-derived Triassic high-Mg andesites in the Sanjiang Tethys, eastern Tibet , 2020 .

[8]  O. Nadeau,et al.  Mineralized Granitic Porphyry of the Yangla Copper Deposit, Western Yunnan, China: Geochemistry of Fluid Inclusions and H-O, S, and Pb Isotopes , 2020 .

[9]  Huan Liu,et al.  In situ major and trace element compositions of apatite from the Yangla skarn Cu deposit, southwest China: Implications for petrogenesis and mineralization , 2020 .

[10]  Zhenhua Zhang,et al.  Study on the Hydraulic Parameters of Woshaxi Landslide Soils during Water Level Drawdown of Three Gorges Reservoir , 2020 .

[11]  Z. Jing,et al.  Mineralogical and geochemical characteristics of the Lunong intrusion from the Yangla ore district in Northwest Yunnan Province and their geological implications , 2020 .

[12]  Zhilong Huang,et al.  Mineralogy, Fluid Inclusion, and Hydrogen and Oxygen Isotope Studies of the Intrusion‐Related Yangla Cu Deposit in the Sanjiang Region, SW China: Implications for Metallogenesis and Deposit Type , 2019, Resource Geology.

[13]  X. Bi,et al.  Sulfur and lead isotopic variations in the giant Yulong porphyry Cu (Mo Au) deposit from the eastern Tibetan Plateau: Implications for origins of S and Pb, and metal precipitation , 2019, Journal of Geochemical Exploration.

[14]  L. Meinert,et al.  Skarn deposits of China , 2019 .

[15]  Cooke,et al.  Porphyry copper deposits in China , 2019 .

[16]  Tao Wu,et al.  Ore genesis of the Fule Pb–Zn deposit and its relationship with the Emeishan Large Igneous Province: Evidence from mineralogy, bulk C–O–S and in situ S–Pb isotopes , 2018 .

[17]  Yongjun Lu,et al.  Hydrothermal evolution and ore genesis of the Beiya giant Au polymetallic deposit, western Yunnan, China: Evidence from fluid inclusions and H–O–S–Pb isotopes , 2017 .

[18]  Zhilong Huang,et al.  Carbon-oxygen isotopic geochemistry of the Yangla Cu skarn deposit, SW China: Implications for the source and evolution of hydrothermal fluids , 2017 .

[19]  Changqing Zhang,et al.  The timing, origin and T-fO2 crystallization conditions of long-lived magmatism at the Yangla copper deposit, Sanjiang Tethyan orogenic belt: Implications for post-collisional magmatic-hydrothermal ore formation , 2016 .

[20]  Shouyu Chen,et al.  Application of the tectono-geochemistry method to mineral prospectivity mapping: a case study of the Gaosong tin-polymetallic deposit, Gejiu district, SW China , 2015 .

[21]  J. Richards,et al.  Genesis and Magmatic-Hydrothermal Evolution of the Yangla Skarn Cu Deposit, Southwest China , 2015 .

[22]  Qingfei Wang,et al.  Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China , 2014 .

[23]  Longbo Yang,et al.  Fluid inclusion and isotope geochemistry of the Yangla copper deposit, Yunnan, China , 2014, Mineralogy and Petrology.

[24]  Zhilong Huang,et al.  Sources and thermo-chemical sulfate reduction for reduced sulfur in the hydrothermal fluids, southeastern SYG Pb-Zn Metallogenic Province, SW China , 2013, Journal of Earth Science.

[25]  I. Metcalfe Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys , 2013 .

[26]  Longbo Yang,et al.  Zircon U–Pb Dating and Geochemistry of the Linong Granitoid and Its Relationship to Cu Mineralization in the Yangla Copper Deposit, Yunnan, China , 2013 .

[27]  Peter A. Cawood,et al.  Late Permian-Triassic magmatic evolution in the Jinshajiang orogenic belt, SW China and implications for orogenic processes following closure of the Paleo-Tethys , 2013, American Journal of Science.

[28]  Chen Siyao Characteristics of ore-forming fluid and mineralization process of the Yangla copper deposit,Yunnan , 2013 .

[29]  Han Runsheng Main Study Progress for Ten Years of Tectono-geochemistry , 2013 .

[30]  Chen Si Characteristics of stable isotopic compositions and its geological significances of the Yangla copper deposit, northwestern Yunnan Province , 2013 .

[31]  Jiajun Liu,et al.  Geochemistry and S, Pb isotope of the Yangla copper deposit, western Yunnan, China: Implication for ore genesis , 2012 .

[32]  Peter A. Cawood,et al.  Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China , 2012 .

[33]  Peter A. Cawood,et al.  Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys , 2012 .

[34]  Peter A. Cawood,et al.  Contrasting rift and subduction‐related plagiogranites in the Jinshajiang ophiolitic mélange, southwest China, and implications for the Paleo‐Tethys , 2012 .

[35]  Y. Xi Characteristics of Ore-Controlling Structures in the Yangla Copper Deposit and Luchun Cu-Pb-Zn Deposit, Western Yunnan , 2012 .

[36]  Heng Chen,et al.  Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China:Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean , 2011 .

[37]  Sun Yan,et al.  Tectono-Geochemistry:A Review , 2011 .

[38]  N. White,et al.  The Pulang Porphyry Copper Deposit and Associated Felsic Intrusions in Yunnan Province, Southwest China , 2011 .

[39]  Gong Ai-hua Quantification of Multi Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry with Pressurized Decomposition-Hydrochloric Acid Extraction , 2011 .

[40]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[41]  Q. Zhang,et al.  Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province , 2009 .

[42]  Zhu Jun Stratigraphic Subdivision of the Yangla Copper Ore Districtu,Northwestern Yunnan , 2009 .

[43]  B. Taylor,et al.  Sulfur Isotope Evidence for Thermochemical Reduction of Dissolved Sulfate in Mississippi Valley-Type Zinc-Lead Mineralization, Bongara Area, Northern Peru , 2008 .

[44]  Dunyi Liu,et al.  SHRIMP dating of the Permo-Carboniferous Jinshajiang ophiolite, southwestern China: Geochronological constraints for the evolution of Paleo-Tethys , 2008 .

[45]  Renbiao Tao SULFUR AND LEAD ISOTOPE COMPOSITIONS OF THE XUEJIPING PORPHYRY COPPER DEPOSIT IN NORTHWEST YUNNAN,CHINA:TRACING FOR THE SOURCE OF METALS , 2008 .

[46]  Z. Hou,et al.  Sanjiang Tethyan metallogenesis in S.W. China: Tectonic setting, metallogenic epochs and deposit types , 2007 .

[47]  Weihua Liu,et al.  Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions , 2005 .

[48]  Han Runsheng Orefield/deposit tectono-geochemical method for the localization and prognosis of concealed orebodies. , 2005 .

[49]  C. Ayora,et al.  Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits , 2004 .

[50]  J. R. Lang,et al.  Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit , 2004 .

[51]  P. Muchez,et al.  Carbonate-Hosted Zn-Pb Deposits in Upper Silesia, Poland: Origin and Evolution of Mineralizing Fluids and Constraints on Genetic Models , 2003 .

[52]  J. R. Lang,et al.  Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: an example from the Bismark Deposit, Mexico , 2003 .

[53]  Han Run-sheng APPLICATION OF TECTONO-GEOCHEMICAL ORE-FINDING METHOD IN ORIENTATION PROGNOSIS OF CONCEALED ORES , 2003 .

[54]  Shenghong Hu,et al.  Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China craton: implications for petrogenesis and lower crustal composition , 2001 .

[55]  P. Jian,et al.  The Jinshajiang–Ailaoshan Suture Zone, China: tectonostratigraphy, age and evolution , 2000 .

[56]  D. Grégoire,et al.  Determination of trace elements in granites by inductively coupled plasma mass spectrometry. , 2000, Talanta.

[57]  Lulu Yuan U-Pb isotopic dating of basalt from the Gajinxueshan Group in the Jinshajiang tectonic belt , 2000 .

[58]  R. Sibson,et al.  Stress/fault controls on the containment and release of overpressured fluids: Examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand , 1998 .

[59]  Zhang Dehui Some new advances in ore-forming fluid geochemistry , 1997 .

[60]  A. Hofmann,et al.  Evaluation of a 202Pb–205Pb Double Spike for High - Precision Lead Isotope Analysis.* , 2013 .

[61]  J. Lorand,et al.  Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study , 1990 .

[62]  B. Doe,et al.  Plumbotectonics-the model , 1981 .

[63]  V. S. Tripathi,et al.  Factor analysis in geochemical exploration , 1979 .

[64]  H. Ohmoto Isotopes of sulfur and carbon , 1979 .

[65]  R. Groshong Strain, fractures, and pressure solution in natural single-layer folds , 1975 .

[66]  H. Ohmoto,et al.  Sulfur and Carbon Isotopes and Ore Genesis: A Review , 1974 .

[67]  J. Hoefs Stable Isotope Geochemistry , 1973 .

[68]  H. Ohmoto Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits , 1972 .

[69]  T. A. Rafter,et al.  Fractionation of Sulfur Isotopes During Ore Deposition in the Upper Mississippi Valley Zinc-Lead District , 1972 .

[70]  J. L. Roberts The Formation of Similar Folds by Inhomogeneous Plastic Strain, with Reference to the Fourth Phase of Deformation Affecting the Dalradian Rocks in the Southwest Highlands of Scotland , 1966, The Journal of Geology.

[71]  H. C. Sorby,et al.  On the direct correlation of mechanical and chemical forces , 1864 .