The application of advanced space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the Chadormalu paleocrater, Bafq region, Central Iran

Abstract Ore deposits are often produced by fluid flow processes that alter the mineralogy and chemistry of the country rock. One of the main objectives in developing a multi-spectral and hyperspectral sensor is to detect the optical characteristics of the Earth’s surface using hundreds of spectral bands. All previous studies show that remote sensing can recognize alteration to different degrees, using different spatial and spectral resolution sensors. The ASTER sensor measures reflected radiation in VNIR, SWIR and TIR electromagnetic energies. It is cheap and easily available. The alteration minerals in the Precambrian Chadormalu area (Chadormalu paleocrater and the related iron oxide deposit) have been investigated in the field and have been successfully detected by applying IARR (Internal Average Relative Reflectance), FCC (False Color Composite), Decorrelation-stretch, MNF (Minimum Noise Fraction Transform), correlated filter and MEM (Mathematical Evaluation Method) techniques on ASTER imageries. Sodic, potassic, and silicic–phyllic alteration patterns can be distinguished. This study shows that the capability and accuracy of the MEM method is better than 2 × 2 correlated filter techniques. Results indicate that pervasive hydrothermal ore-forming processes were important in the study area. Judging from the assemblage of alteration minerals, the Chadormalu iron deposit is an end-member of the Kiruna type – Iron oxide (Cu–Au) ore deposit continuum.

[1]  F. Sabins,et al.  Remote sensing for mineral exploration , 1999 .

[2]  W. D. Nesse Introduction To Mineralogy , 2008 .

[3]  Dr Robert Bryant,et al.  The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset , 2002 .

[4]  A. Jafarzadeh,et al.  The Chador Malu Iron Ore Deposit (Bafq District, Central Iran) — Magnetite Filled Pipes , 1984 .

[5]  James K. Crowley,et al.  Comparative alteration mineral mapping using visible to shortwave infrared (0.4-2.4 μm) Hyperion, ALI, and ASTER imagery , 2003, IEEE Trans. Geosci. Remote. Sens..

[6]  Hiroyuki Fujisada,et al.  Design and performance of ASTER instrument , 1995, Remote Sensing.

[7]  James V. Taranik,et al.  Hydrothermal Alteration Mapping at Bodie, California, Using AVIRIS Hyperspectral Data , 1998 .

[8]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[9]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[10]  R. E. Walker,et al.  Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity , 1986 .

[11]  R. Blom,et al.  A remote sensing approach to alteration mapping: AVIRIS data and extension-related potassium metasomatism, Socorro, New Mexico , 1997 .

[12]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[13]  Paul M. Mather,et al.  Computer Processing of Remotely-Sensed Images: An Introduction , 1988 .

[14]  G. Wadge,et al.  The application of imaging spectrometry data to mapping alteration zones associated with gold mineralization in southern Spain , 1996 .

[15]  John W. Salisbury,et al.  Mid-infrared spectral behavior of sedimentary rocks , 1975 .

[16]  E. Carranza,et al.  Mineral imaging with Landsat Thematic Mapper data for hydrothermal alteration mapping in heavily vegetated terrane , 2002 .

[17]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[18]  F. D. van der Meer,et al.  Extraction of mineral absorption features from high - spectral resolution data using non - parametric geostatistical techniques , 1994 .

[19]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[20]  A. Green,et al.  A software defoliant for geological analysis of band ratios , 1987 .

[21]  Alan R. Gillespie,et al.  Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1996, Optics & Photonics.

[22]  Mark A. Folkman,et al.  EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration , 2001, SPIE Asia-Pacific Remote Sensing.

[23]  M. H. Tangestani,et al.  Porphyry copper alteration mapping at the Meiduk area, Iran , 2002 .

[24]  B. ‐. Samani,et al.  Metallogeny of the Precambrian in Iran , 1988 .

[25]  H. Foerster,et al.  The Bafq mining district in central Iran; a highly mineralized Infracambrian volcanic field , 1994 .

[26]  Hojjatollah Ranjbar,et al.  Digital image processing for lithological and alteration mapping using SPOT multispectral data: a case study of Pariz area, Kerman Province, Iran , 2002, Remote Sensing.

[27]  L. Rowan Analysis of simulated advanced spaceborne thermal emission and reflection (ASTER) radiometer data of the Iron Hill, Colorado, study area for mapping lithologies , 1998 .

[28]  John W. Salisbury,et al.  Mid-Infrared Spectral Behavior of Metamorphic Rocks. , 1976 .

[29]  N. Oreskes,et al.  Geological characteristics and tectonic setting of proterozoic iron oxide (CuUAuREE) deposits , 1992 .

[30]  Lawrence C. Rowan,et al.  Spectral reflectance of carbonatites and related alkalic igneous rocks; selected samples from four North American localities , 1986 .

[31]  Fred A. Kruse,et al.  Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..

[32]  John W. Salisbury,et al.  Mid-Infrared Spectral Behavior of Igneous Rocks. , 1974 .

[33]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[34]  K. Oki,et al.  A technique for mapping thermal infrared radiation variation within land cover , 2003, IEEE Trans. Geosci. Remote. Sens..

[35]  A. Gillespie Enhancement of multispectral thermal infrared images: Decorrelation contrast stretching☆ , 1992 .