Method to account for arbitrary strains in kinetic Monte Carlo simulations

We present a method for efficiently recomputing rates in a kinetic Monte Carlo simulation when the existing rate catalog is modified by the presence of a strain field. We use the concept of the dipole tensor to estimate the changes in the kinetic barriers that comprise the catalog, thereby obviating the need for recomputing them from scratch. The underlying assumptions in the method are that linear elasticity is valid, and that the topology of the underlying potential energy surface (and consequently, the fundamental structure of the rate catalog) is not changed by the strain field. As a simple test case, we apply the method to a single vacancy in zirconium diffusing in the strain field of a dislocation, and discuss the consequences of the assumptions on simulating more complex materials.