Functional random effect time‐varying coefficient model for longitudinal data

We propose a functional random effect time-varying coefficient model to establish the dynamic relationship between the response and predictor variables in longitudinal data. This model allows us not only to interpret time-varying covariate effects, but also to depict random effects via time-varying profiles that are characterized by functional principal components. We develop the functional profiling-backfitting method to estimate model components, which includes the profiling and backfitting procedures via a set of least squares type estimating equations. Asymptotic properties of the resulting estimator are obtained. Furthermore, we investigate the finite sample performance of the proposed method through simulation studies and present an application to primary biliary cirrhosis data.

[1]  Jianhua Z. Huang,et al.  Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements , 2008, Journal of the American Statistical Association.

[2]  Jianqing Fan,et al.  Two‐step estimation of functional linear models with applications to longitudinal data , 1999 .

[3]  R. Tibshirani,et al.  Generalized Additive Models , 1986 .

[4]  Kani Chen,et al.  Local polynomial regression analysis of clustered data , 2005 .

[5]  Peter Hall,et al.  Assessing the finite dimensionality of functional data , 2006 .

[6]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[7]  J. Ramsay,et al.  Some Tools for Functional Data Analysis , 1991 .

[8]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[9]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[10]  Jianqing Fan,et al.  Statistical Estimation in Varying-Coefficient Models , 1999 .

[11]  Zhiliang Ying,et al.  Semiparametric and Nonparametric Regression Analysis of Longitudinal Data , 2001 .

[12]  Julian J. Faraway,et al.  An F test for linear models with functional responses , 2004 .

[13]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[14]  Jerzy Zabczyk,et al.  Topics in stochastic processes , 2013 .

[15]  Masahiro Ito,et al.  Treatment of liver failure in rats with end‐stage cirrhosis by transplantation of immortalized hepatocytes , 2002, Hepatology.

[16]  Xiaohong Chen,et al.  Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .

[17]  P. Hall,et al.  On properties of functional principal components analysis , 2006 .

[18]  J. Rice,et al.  Smoothing spline models for the analysis of nested and crossed samples of curves , 1998 .

[19]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[20]  Damla Şentürk,et al.  Functional Varying Coefficient Models for Longitudinal Data , 2010 .

[21]  Chin-Tsang Chiang,et al.  Asymptotic Confidence Regions for Kernel Smoothing of a Varying-Coefficient Model With Longitudinal Data , 1998 .

[22]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[23]  J. Faraway Regression analysis for a functional response , 1997 .

[24]  Gerda Claeskens,et al.  Bootstrap confidence bands for regression curves and their derivatives , 2003 .

[25]  Li Ping Yang,et al.  Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .

[26]  Jane-ling Wang,et al.  Functional linear regression analysis for longitudinal data , 2005, math/0603132.

[27]  Yingcun Xia,et al.  Shrinkage Estimation of the Varying Coefficient Model , 2008 .