Experimental study of the effects of flameholder geometry on emissions and performance of lean premixed combustors

Emissions of NOx, CO, and unburned hydrocarbons (UHC) are reported for a lean premixed propane-air system at inlet conditions of 800K and 1MPa using twelve flameholder designs. The flameholders tested represent six design concepts with two values of blockage for each concept. Data were obtained at reference velocities of 35 m/s, 25 m/s and 20 m/s at combustor stations 10 cm and 30 cm downstream of the flameholders. Flameholder pressure drop was found to be a principal determinant of emissions performance. Designs producing larger pressure drops also produced less NOx, CO, and UHC emissions. The lean stability limit equivalence ratio was found to be approximately 0.35 for all designs. Flashback velocities (axial components in the flameholder passages) varied between 30 m/s and 40 m/s. A perforated plate flameholder was operated with a velocity as low as 23 m/s through the perforations at equivalence ratio 0.7 without producing flashback.