Multiscale Design of Flexible Metal–Organic Frameworks

Flexible materials can adapt to external stimuli with predictable and controllable responses. The emergence of dynamic behavior in metal–organic frameworks (MOFs) is promising for the development of ‘smart’ materials for applications that leverage their porosities and tunable chemical compositions, including the storage, separation, and sensing of small molecules. The translation of molecular structural transformations to macroscopic responses requires the multiscale design of flexible MOF systems. This review summarizes the progress in this area focusing on the past 3–5 years, starting from the modular assembly of building blocks and continuing to the management of dynamics in device architectures.

[1]  Ryan P. Lively,et al.  Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis , 2012 .

[2]  D. Adams,et al.  Chemical control of structure and guest uptake by a conformationally mobile porous material , 2019, Nature.

[3]  Craig M. Brown,et al.  Tuning the Adsorption-Induced Phase Change in the Flexible Metal-Organic Framework Co(bdp). , 2016, Journal of the American Chemical Society.

[4]  François-Xavier Coudert,et al.  Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks , 2019, Nature Communications.

[5]  D. Banerjee,et al.  Flexibility in Metal–Organic Frameworks: A fundamental understanding , 2018 .

[6]  Bryana L. Henderson,et al.  Photophysical pore control in an azobenzene-containing metal–organic framework , 2013 .

[7]  Mercedes K. Taylor,et al.  Influence of Metal Substitution on the Pressure-Induced Phase Change in Flexible Zeolitic Imidazolate Frameworks. , 2018, Journal of the American Chemical Society.

[8]  Jian Zhang,et al.  Topology-Guided Stepwise Insertion of Three Secondary Linkers in Zirconium Metal-Organic Frameworks. , 2018, Journal of the American Chemical Society.

[9]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[10]  Dan Zhao,et al.  Breathing-induced new phase transition in an MIL-53(Al)-NH2 metal-organic framework under high methane pressures. , 2017, Chemical communications.

[11]  Jinhee Park,et al.  Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. , 2012, Journal of the American Chemical Society.

[12]  Stefan Bräse,et al.  Tunable molecular separation by nanoporous membranes , 2016, Nature Communications.

[13]  M. Fröba,et al.  New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc = 2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4′-biphenyl dicarboxylate) , 2009 .

[14]  Wu Xu,et al.  An Electrically Switchable Metal-Organic Framework , 2014, Scientific Reports.

[15]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[16]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[17]  C. Serre,et al.  Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks , 2007, Science.

[18]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[19]  Freek Kapteijn,et al.  Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53(Al)@PI , 2014 .

[20]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[21]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[22]  Matthias Zeller,et al.  Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release , 2016, Science Advances.

[23]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[24]  Dan Zhao,et al.  Functionalization-Induced Breathing Control in Metal–Organic Frameworks for Methane Storage with High Deliverable Capacity , 2019, Chemistry of Materials.

[25]  Aamod V. Desai,et al.  Guest-Responsive Metal-Organic Frameworks as Scaffolds for Separation and Sensing Applications. , 2017, Accounts of chemical research.

[26]  L. León-Reina,et al.  A Self-Folding Polymer Film Based on Swelling Metal-Organic Frameworks. , 2018, Angewandte Chemie.

[27]  Dan Zhao,et al.  An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. , 2010, Angewandte Chemie.

[28]  G. Kresse,et al.  Tuning the balance between dispersion and entropy to design temperature-responsive flexible metal-organic frameworks , 2018, Nature Communications.

[29]  Satoshi Watanabe,et al.  Tuning the gate-opening pressure and particle size distribution of the switchable metal-organic framework DUT-8(Ni) by controlled nucleation in a micromixer. , 2017, Dalton transactions.

[30]  J. Greneche,et al.  Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. , 2008, Chemical communications.

[31]  S. Krause,et al.  Tailoring adsorption induced phase transitions in the pillared-layer type metal-organic framework DUT-8(Ni). , 2017, Dalton transactions.

[32]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[33]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[34]  Zhaoquan Yao,et al.  A Dual-Stimuli-Responsive Coordination Network Featuring Reversible Wide-Range Luminescence-Tuning Behavior. , 2019, Angewandte Chemie.

[35]  P. Heitjans,et al.  Defibrillation of soft porous metal-organic frameworks with electric fields , 2017, Science.

[36]  J. Caro,et al.  Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. , 2010, Journal of the American Chemical Society.

[37]  Michael J. Zaworotko,et al.  Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[38]  D. D. De Vos,et al.  A Breathing Zirconium Metal-Organic Framework with Reversible Loss of Crystallinity by Correlated Nanodomain Formation. , 2016, Chemistry.

[39]  O. Yaghi,et al.  Secondary building units as the turning point in the development of the reticular chemistry of MOFs , 2018, Science Advances.

[40]  J. Soler,et al.  Flexibility in a metal-organic framework material controlled by weak dispersion forces: the bistability of MIL-53(Al). , 2010, Angewandte Chemie.

[41]  S. Kitagawa,et al.  A flexible interpenetrating coordination framework with a bimodal porous functionality. , 2007, Nature materials.

[42]  Hong‐Cai Zhou,et al.  A mesh-adjustable molecular sieve for general use in gas separation. , 2007, Angewandte Chemie.

[43]  R. Walton,et al.  MIL-53 and its Isoreticular Analogues: a Review of the Chemistry and Structure of a Prototypical Flexible Metal-Organic Framework , 2018, Israel Journal of Chemistry.

[44]  S. Krause,et al.  A highly porous metal-organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. , 2012, Chemical communications.

[45]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[46]  K. M. Gupta,et al.  Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation , 2017, Nature Communications.

[47]  Xing Sun,et al.  Linker Installation: Engineering Pore Environment with Precisely Placed Functionalities in Zirconium MOFs. , 2016, Journal of the American Chemical Society.

[48]  Osami Sakata,et al.  Guest-Induced Two-Way Structural Transformation in a Layered Metal-Organic Framework Thin Film. , 2016, Journal of the American Chemical Society.

[49]  S. Kaskel,et al.  Tolerance of Flexible MOFs toward Repeated Adsorption Stress. , 2015, ACS applied materials & interfaces.

[50]  S. Kitagawa,et al.  Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing , 2013, Science.

[51]  Martin R. Lohe,et al.  Structural flexibility and intrinsic dynamics in the M2(2,6-ndc)2(dabco) (M = Ni, Cu, Co, Zn) metal–organic frameworks , 2012 .

[52]  A. Slawin,et al.  Synthesis, characterisation and adsorption properties of microporous scandium carboxylates with rigid and flexible frameworks , 2011 .

[53]  A. Feldhoff,et al.  Oriented Zeolitic Imidazolate Framework-8 Membrane with Sharp H2/C3H8 Molecular Sieve Separation , 2011 .

[54]  François-Xavier Coudert,et al.  Responsive Metal–Organic Frameworks and Framework Materials: Under Pressure, Taking the Heat, in the Spotlight, with Friends , 2015 .

[55]  C. Doherty,et al.  MOF positioning technology and device fabrication. , 2014, Chemical Society reviews.

[56]  Mohamed Eddaoudi,et al.  A supermolecular building approach for the design and construction of metal-organic frameworks. , 2014, Chemical Society reviews.

[57]  D. Neumann,et al.  Reversible structural transition in MIL-53 with large temperature hysteresis. , 2008, Journal of the American Chemical Society.

[58]  Christina T. Lollar,et al.  Stable Metal–Organic Frameworks: Design, Synthesis, and Applications , 2018, Advanced materials.

[59]  O. Farha,et al.  A Flexible Metal-Organic Framework with 4-Connected Zr6 Nodes. , 2018, Journal of the American Chemical Society.

[60]  R. Fischer,et al.  Metal-organic framework thin films: from fundamentals to applications. , 2012, Chemical reviews.

[61]  R. Schmid,et al.  Tuning the Electric Field Response of MOFs by Rotatable Dipolar Linkers , 2019, ACS central science.

[62]  Sanliang Ling,et al.  Contradistinct Thermoresponsive Behavior of Isostructural MIL-53 Type Metal?Organic Frameworks by Modifying the Framework Inorganic Anion , 2015 .

[63]  C. Serre,et al.  Very large swelling in hybrid frameworks: a combined computational and powder diffraction study. , 2005, Journal of the American Chemical Society.

[64]  Jürgen Caro,et al.  Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.

[65]  M. Tu,et al.  Different Breathing Mechanisms in Flexible Pillared-Layered Metal–Organic Frameworks: Impact of the Metal Center , 2018 .

[66]  D. Maspoch,et al.  Programmable Self‐Assembling 3D Architectures Generated by Patterning of Swellable MOF‐Based Composite Films , 2019, Advanced materials.

[67]  C. Morrison,et al.  Tuning the Swing Effect by Chemical Functionalization of Zeolitic Imidazolate Frameworks. , 2018, Journal of the American Chemical Society.

[68]  A. Cheetham,et al.  The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. , 2009, Angewandte Chemie.

[69]  S. Kitagawa,et al.  Flexible interlocked porous frameworks allow quantitative photoisomerization in a crystalline solid , 2017, Nature Communications.

[70]  Qiang Zhang,et al.  Flexible Zirconium Metal-Organic Frameworks as Bioinspired Switchable Catalysts. , 2016, Angewandte Chemie.

[71]  M. Zaworotko,et al.  Coordination Network That Reversibly Switches between Two Nonporous Polymorphs and a High Surface Area Porous Phase. , 2018, Journal of the American Chemical Society.

[72]  Zu-Jin Lin,et al.  Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. , 2014, Chemical Society reviews.

[73]  The effect of crystallite size on pressure amplification in switchable porous solids , 2018, Nature Communications.

[74]  Dan Zhao,et al.  Solvent-Induced Control over Breathing Behavior in Flexible Metal-Organic Frameworks for Natural-Gas Delivery. , 2019, Angewandte Chemie.

[75]  S. Wuttke,et al.  Expanding the Group of Porous Interpenetrated Zr-Organic Frameworks (PIZOFs) with Linkers of Different Lengths. , 2017, Inorganic chemistry.

[76]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[77]  Aziz Ghoufi,et al.  Electrically Induced Breathing of the MIL-53(Cr) Metal–Organic Framework , 2017, ACS central science.

[78]  François-Xavier Coudert,et al.  A pressure-amplifying framework material with negative gas adsorption transitions , 2016, Nature.

[79]  S. Kitagawa,et al.  Flexible microporous coordination polymers , 2005 .

[80]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[81]  Shuai Yuan,et al.  Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends , 2018, ACS central science.

[82]  Osami Sakata,et al.  Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. , 2016, Nature chemistry.

[83]  Kyriakos C. Stylianou,et al.  An Adaptable Peptide-Based Porous Material , 2010, Science.

[84]  Aamod V. Desai,et al.  Stimulus-responsive metal-organic frameworks. , 2014, Chemistry, an Asian journal.

[85]  J. Caro,et al.  Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation , 2018, Science Advances.

[86]  Klaus Huber,et al.  Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering , 2011 .

[87]  Diego A. Gómez-Gualdrón,et al.  Ultraporous, Water Stable, and Breathing Zirconium-Based Metal-Organic Frameworks with ftw Topology. , 2015, Journal of the American Chemical Society.

[88]  Masafumi Inoue,et al.  Guest-to-host transmission of structural changes for stimuli-responsive adsorption property. , 2012, Journal of the American Chemical Society.

[89]  S. Kaskel,et al.  Flexible metal-organic frameworks. , 2014, Chemical Society reviews.

[90]  G. Shimizu,et al.  Mechanical Properties of a Metal-Organic Framework formed by Covalent Cross-Linking of Metal-Organic Polyhedra. , 2019, Journal of the American Chemical Society.

[91]  Richard L. Martin,et al.  On the flexibility of metal-organic frameworks. , 2014, Journal of the American Chemical Society.

[92]  M. Briggs,et al.  Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding , 2014, Nature Chemistry.

[93]  Tony Pham,et al.  Readily accessible shape-memory effect in a porous interpenetrated coordination network , 2018, Science Advances.

[94]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[95]  Armin Feldhoff,et al.  Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. , 2010, Angewandte Chemie.

[96]  F. Taulelle,et al.  Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)·H2O , 2005 .

[97]  M. Zaworotko,et al.  A dynamic and multi-responsive porous flexible metal–organic material , 2018, Nature Communications.

[98]  S. Rogge,et al.  Thermodynamic insight into stimuli-responsive behaviour of soft porous crystals , 2018, Nature Communications.

[99]  François-Xavier Coudert,et al.  Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks , 2018, The journal of physical chemistry. C, Nanomaterials and interfaces.

[100]  J. Ferrando‐Soria,et al.  Metal–organic framework technologies for water remediation: towards a sustainable ecosystem , 2018 .

[101]  Kyoung Ho Cho,et al.  The structure of the aluminum fumarate metal-organic framework A520. , 2015, Angewandte Chemie.

[102]  M. A. van der Veen,et al.  Controlled partial interpenetration in metal–organic frameworks , 2016, Nature Chemistry.

[103]  S. Krause,et al.  The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal–organic framework DUT-98 , 2019, Beilstein journal of nanotechnology.

[104]  Shing Bo Peh,et al.  Plasticization resistance-enhanced CO2 separation at elevated pressures by mixed matrix membranes containing flexible metal-organic framework fillers , 2019, Journal of Membrane Science.

[105]  J. Caro,et al.  Photo-switchable smart metal–organic framework membranes with tunable and enhanced molecular sieving performance , 2018 .

[106]  Andrew L. Goodwin,et al.  Supramolecular mechanics in a metal–organic framework , 2012 .

[107]  G. Férey Swelling Hybrid Solids , 2012 .

[108]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[109]  Hans Van Gorp,et al.  Chemical vapour deposition of zeolitic imidazolate framework thin films. , 2016, Nature materials.

[110]  S. Parsons,et al.  Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. , 2011, Journal of the American Chemical Society.

[111]  S. Kitagawa,et al.  Switchable gate-opening effect in metal–organic polyhedra assemblies through solution processing† †Electronic supplementary information (ESI) available: Experimental procedures, crystallographic tables, thermogravimetric data, volumetric gas sorption data for N2 and CO2, additional powder X-ray diff , 2018, Chemical science.

[112]  Benny D. Freeman,et al.  Maximizing the right stuff: The trade-off between membrane permeability and selectivity , 2017, Science.

[113]  L. Barbour,et al.  Activation-Dependent Breathing in a Flexible Metal-Organic Framework and the Effects of Repeated Sorption/Desorption Cycling. , 2017, Angewandte Chemie.

[114]  O. Shekhah,et al.  MOF thin films: existing and future applications. , 2011, Chemical Society reviews.

[115]  Dongwook Kim,et al.  Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial , 2019, Science Advances.

[116]  Lauren N. McHugh,et al.  Hydrolytic stability in hemilabile metal–organic frameworks , 2018, Nature Chemistry.

[117]  Yongchul G. Chung,et al.  Elucidation of flexible metal-organic frameworks: Research progresses and recent developments , 2019, Coordination Chemistry Reviews.

[118]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[119]  Yu Han,et al.  Morphological Map of ZIF-8 Crystals with Five Distinctive Shapes: Feature of Filler in Mixed-Matrix Membranes on C3H6/C3H8 Separation , 2018 .

[120]  M. Tu,et al.  Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces , 2019, Nature Communications.

[121]  H. Su,et al.  Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants , 2011 .

[122]  Ryan P. Lively,et al.  Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8 , 2014 .