Pattern of retinal morphological and functional decay in a light-inducible, rhodopsin mutant mouse

[1]  J. Bennett,et al.  Gene Therapy and Stem Cell Transplantation in Retinal Disease: The New Frontier. , 2016, Ophthalmology.

[2]  L. Arckens,et al.  Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system , 2016, The European journal of neuroscience.

[3]  C. Toris,et al.  Aqueous Flow Measured by Fluorophotometry in the Mouse , 2016, Investigative ophthalmology & visual science.

[4]  G. Aguirre,et al.  Assessment of visual function and retinal structure following acute light exposure in the light sensitive T4R rhodopsin mutant dog. , 2016, Experimental eye research.

[5]  E. Strettoi,et al.  Involvement of Autophagic Pathway in the Progression of Retinal Degeneration in a Mouse Model of Diabetes , 2016, Front. Cell. Neurosci..

[6]  Günther Zeck,et al.  Aberrant Activity in Degenerated Retinas Revealed by Electrical Imaging , 2016, Front. Cell. Neurosci..

[7]  W. Hauswirth,et al.  Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial , 2016, Human Genetics.

[8]  Thomas Euler,et al.  Multiple Independent Oscillatory Networks in the Degenerating Retina , 2015, Front. Cell. Neurosci..

[9]  Thomas Euler,et al.  Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina , 2014, Front. Neural Circuits.

[10]  A. Lewin,et al.  Gene augmentation for adRP mutations in RHO. , 2014, Cold Spring Harbor perspectives in medicine.

[11]  T. Léveillard,et al.  Therapeutic strategy for handling inherited retinal degenerations in a gene-independent manner using rod-derived cone viability factors. , 2014, Comptes rendus biologies.

[12]  E. Strettoi,et al.  Environmental Enrichment Extends Photoreceptor Survival and Visual Function in a Mouse Model of Retinitis Pigmentosa , 2012, PloS one.

[13]  L. Cervetto,et al.  Processing of Retinal Signals in Normal and HCN Deficient Mice , 2012, PloS one.

[14]  Wenjun Xiong,et al.  Loss of Daylight Vision in Retinal Degeneration: Are Oxidative Stress and Metabolic Dysregulation to Blame?* , 2011, The Journal of Biological Chemistry.

[15]  Michael P. Andrews,et al.  Developmental time course distinguishes changes in spontaneous and light-evoked retinal ganglion cell activity in rd1 and rd10 mice. , 2011, Journal of neurophysiology.

[16]  W. Hauswirth,et al.  AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa. , 2011, Human gene therapy.

[17]  Y. Courtois,et al.  Light-induced retinal degeneration correlates with changes in iron metabolism gene expression, ferritin level, and aging. , 2011, Investigative ophthalmology & visual science.

[18]  E. Strettoi,et al.  Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa , 2010, Proceedings of the National Academy of Sciences.

[19]  Shomi S. Bhattacharya,et al.  Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait , 2010, Nature Reviews Genetics.

[20]  J. Naggert,et al.  Mutations of the Opsin Gene (Y102H and I307N) Lead to Light-induced Degeneration of Photoreceptors and Constitutive Activation of Phototransduction in Mice* , 2010, The Journal of Biological Chemistry.

[21]  Donald T. Miller,et al.  Imaging outer segment renewal in living human cone photoreceptors. , 2010, Optics express.

[22]  J. Flannery,et al.  Severe retinal degeneration caused by a novel rhodopsin mutation. , 2010, Investigative ophthalmology & visual science.

[23]  M. Cheetham,et al.  Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa. , 2008, Human molecular genetics.

[24]  Thomas Euler,et al.  Functional Stability of Retinal Ganglion Cells after Degeneration-Induced Changes in Synaptic Input , 2008, The Journal of Neuroscience.

[25]  S. Stasheff Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. , 2008, Journal of neurophysiology.

[26]  Chao Zhang,et al.  IRE1 Signaling Affects Cell Fate During the Unfolded Protein Response , 2007, Science.

[27]  K. Tsubota,et al.  Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-kappaB pathway. , 2007, Investigative ophthalmology & visual science.

[28]  E. Strettoi,et al.  Effects of Photoreceptor Degeneration on Ganglion Cell Morphology: The rd10/Thy1-GFP Mouse , 2007 .

[29]  Enrica Strettoi,et al.  Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: A morphological and ERG study , 2007, The Journal of comparative neurology.

[30]  S. Joly,et al.  Light-induced retinopathy: comparing adult and juvenile rats. , 2006, Investigative ophthalmology & visual science.

[31]  B. Chang,et al.  Study of rod- and cone-driven oscillatory potentials in mice. , 2006, Investigative ophthalmology & visual science.

[32]  G. Acland,et al.  A Naturally Occurring Mutation of the Opsin Gene (T4R) in Dogs Affects Glycosylation and Stability of the G Protein-coupled Receptor* , 2004, Journal of Biological Chemistry.

[33]  T. Kraft,et al.  Oscillatory potential analysis and ERGs of normal and diabetic rats. , 2004, Investigative ophthalmology & visual science.

[34]  E. Strettoi,et al.  Inner retinal abnormalities in a mouse model of Leber's congenital amaurosis , 2004, The Journal of comparative neurology.

[35]  B. Jones,et al.  Neural remodeling in retinal degeneration , 2003, Progress in Retinal and Eye Research.

[36]  M. Simon,et al.  Light-Dependent Translocation of Arrestin in the Absence of Rhodopsin Phosphorylation and Transducin Signaling , 2003, The Journal of Neuroscience.

[37]  Vittorio Porciatti,et al.  Morphological and Functional Abnormalities in the Inner Retina of the rd/rd Mouse , 2002, The Journal of Neuroscience.

[38]  M. T. Davisson,et al.  Retinal degeneration mutants in the mouse , 2002, Vision Research.

[39]  B. Rosner,et al.  Effect of vitamin A supplementation on rhodopsin mutants threonine-17 --> methionine and proline-347 --> serine in transgenic mice and in cell cultures. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Cideciyan,et al.  Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  C. M. Davenport,et al.  Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain. , 1993, The Journal of biological chemistry.

[42]  T. Dryja,et al.  Transgenic mice with a rhodopsin mutation (Pro23His): A mouse model of autosomal dominant retinitis pigmentosa , 1992, Neuron.

[43]  J. Nathans,et al.  Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  B. Jones,et al.  Retinal remodeling , 2012, Japanese Journal of Ophthalmology.

[45]  T. Jahnke,et al.  IRE 1 Signaling Affects Cell Fate During the Unfolded Protein Response , 2008 .