QuickSel: Quick Selectivity Learning with Mixture Models
暂无分享,去创建一个
[1] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[2] B. Ripley,et al. Pattern Recognition , 1968, Nature.
[3] Patricia G. Selinger,et al. Access path selection in a relational database management system , 1979, SIGMOD '79.
[4] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[5] Clifford A. Lynch,et al. Selectivity Estimation and Query Optimization in Large Databases with Highly Skewed Distribution of Column Values , 1988, VLDB.
[6] D. DeWitt,et al. Equi-depth multidimensional histograms , 1988, SIGMOD '88.
[7] Jeffrey F. Naughton,et al. Practical selectivity estimation through adaptive sampling , 1990, SIGMOD '90.
[8] A. Genz. Numerical Computation of Multivariate Normal Probabilities , 1992 .
[9] Allen Van Gelder,et al. Multiple Join Size Estimation by Virtual Domains. , 1993, PODS 1993.
[10] Nick Roussopoulos,et al. Adaptive selectivity estimation using query feedback , 1994, SIGMOD '94.
[11] Jeffrey F. Naughton,et al. On the relative cost of sampling for join selectivity estimation , 1994, PODS '94.
[12] Arun N. Swami,et al. On the Estimation of Join Result Sizes , 1994, EDBT.
[13] H. Joe. Approximations to Multivariate Normal Rectangle Probabilities Based on Conditional Expectations , 1995 .
[14] P. Craigmile,et al. Parameter estimation for finite mixtures of uniform distributions , 1997 .
[15] Torsten Suel,et al. Optimal Histograms with Quality Guarantees , 1998, VLDB.
[16] Bernhard Seeger,et al. A comparison of selectivity estimators for range queries on metric attributes , 1999, SIGMOD '99.
[17] Theodore Johnson,et al. Range selectivity estimation for continuous attributes , 1999, Proceedings. Eleventh International Conference on Scientific and Statistical Database Management.
[18] Divesh Srivastava,et al. Multi-Dimensional Substring Selectivity Estimation , 1999, VLDB.
[19] Divesh Srivastava,et al. Substring selectivity estimation , 1999, PODS '99.
[20] Surajit Chaudhuri,et al. Self-tuning histograms: building histograms without looking at data , 1999, SIGMOD '99.
[21] Divesh Srivastava,et al. Optimal histograms for hierarchical range queries (extended abstract) , 2000, PODS '00.
[22] Divesh Srivastava,et al. One-dimensional and multi-dimensional substring selectivity estimation , 2000, The VLDB Journal.
[23] Dimitrios Gunopulos,et al. Approximating multi-dimensional aggregate range queries over real attributes , 2000, SIGMOD 2000.
[24] Divesh Srivastava,et al. Optimal histograms for hierarchical range queries , 2000, ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
[25] Volker Markl,et al. LEO - DB2's LEarning Optimizer , 2001, VLDB.
[26] Ben Taskar,et al. Selectivity estimation using probabilistic models , 2001, SIGMOD '01.
[27] Beng Chin Ooi,et al. Global optimization of histograms , 2001, SIGMOD '01.
[28] Rajeev Rastogi,et al. Independence is good: dependency-based histogram synopses for high-dimensional data , 2001, SIGMOD '01.
[29] Selectivity Estimation using Probabilistic Models , 2001, SIGMOD Conference.
[30] Jeffrey F. Naughton,et al. Estimating the Selectivity of XML Path Expressions for Internet Scale Applications , 2001, VLDB.
[31] Luis Gravano,et al. STHoles: a multidimensional workload-aware histogram , 2001, SIGMOD '01.
[32] Dimitris Papadias,et al. Selectivity Estimation of Complex Spatial Queries , 2001, SSTD.
[33] Sudipto Guha,et al. Fast algorithms for hierarchical range histogram construction , 2002, PODS '02.
[34] Xuemin Lin,et al. On Linear-Spline Based Histograms , 2002, WAIM.
[35] Sudipto Guha,et al. Dynamic multidimensional histograms , 2002, SIGMOD '02.
[36] Dimitrios Gunopulos,et al. Selectivity estimators for multidimensional range queries over real attributes , 2005, The VLDB Journal.
[37] Jimeng Sun,et al. Selectivity estimation for predictive spatio-temporal queries , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).
[38] Jeffrey Scott Vitter,et al. SASH: A Self-Adaptive Histogram Set for Dynamically Changing Workloads , 2003, VLDB.
[39] Jignesh M. Patel,et al. Using histograms to estimate answer sizes for XML queries , 2003, Inf. Syst..
[40] Qing Liu,et al. Multiscale Histograms: Summarizing Topological Relations in Large Spatial Datasets , 2003, VLDB.
[41] Xuemin Lin,et al. Clustering Moving Objects for Spatio-temporal Selectivity Estimation , 2004, ADC.
[42] Paul Brown,et al. CORDS: automatic discovery of correlations and soft functional dependencies , 2004, SIGMOD '04.
[43] Lei Chen,et al. Multi-scale histograms for answering queries over time series data , 2004, Proceedings. 20th International Conference on Data Engineering.
[44] Leonidas J. Guibas,et al. The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.
[45] Peter J. Haas,et al. Consistently Estimating the Selectivity of Conjuncts of Predicates , 2005, VLDB.
[46] Bin Dong,et al. K-Histograms: An Efficient Clustering Algorithm for Categorical Dataset , 2005, ArXiv.
[47] Kenneth Salem,et al. Dynamic histograms for non-stationary updates , 2005, 9th International Database Engineering & Application Symposium (IDEAS'05).
[48] Guoliang Li,et al. DMT: A Flexible and Versatile Selectivity Estimation Approach for Graph Query , 2005, WAIM.
[49] Evaggelia Pitoura,et al. Query workload-aware overlay construction using histograms , 2005, CIKM '05.
[50] Peter J. Haas,et al. Consistent selectivity estimation via maximum entropy , 2007, The VLDB Journal.
[51] Surajit Chaudhuri,et al. 3 Self-Tuning Histograms : Exploiting Execution Feedback , 2006 .
[52] Peter J. Haas,et al. ISOMER: Consistent Histogram Construction Using Query Feedback , 2006, 22nd International Conference on Data Engineering (ICDE'06).
[53] Neoklis Polyzotis,et al. Graph-based synopses for relational selectivity estimation , 2006, SIGMOD Conference.
[54] Jimeng Sun,et al. Spatio-temporal join selectivity , 2006, Inf. Syst..
[55] Srinivasan Parthasarathy,et al. A Decomposition-Based Probabilistic Framework for Estimating the Selectivity of XML Twig Queries , 2006, EDBT.
[56] Sourav S. Bhowmick,et al. Efficient evaluation of high-selective xml twig patterns with parent child edges in tree-unaware rdbms , 2007, CIKM '07.
[57] Nasser M. Nasrabadi,et al. Pattern Recognition and Machine Learning , 2006, Technometrics.
[58] Vivek R. Narasayya,et al. Self-Tuning Database Systems: A Decade of Progress , 2007, VLDB.
[59] Divesh Srivastava,et al. Estimating the selectivity of approximate string queries , 2007, TODS.
[60] Nikos Mamoulis,et al. Lattice Histograms: a Resilient Synopsis Structure , 2008, 2008 IEEE 24th International Conference on Data Engineering.
[61] Sebastian Michel,et al. Smooth Interpolating Histograms with Error Guarantees , 2008, BNCOD.
[62] Dan Suciu,et al. Consistent Histograms In The Presence of Distinct Value Counts , 2009, Proc. VLDB Endow..
[63] Dan Suciu,et al. Boosting the accuracy of differentially private histograms through consistency , 2009, Proc. VLDB Endow..
[64] Andrew McGregor,et al. Optimizing linear counting queries under differential privacy , 2009, PODS.
[65] Feifei Li,et al. Building Wavelet Histograms on Large Data in MapReduce , 2011, Proc. VLDB Endow..
[66] Eli Upfal,et al. The VC-Dimension of SQL Queries and Selectivity Estimation through Sampling , 2011, ECML/PKDD.
[67] Klemens Böhm,et al. Sensitivity of Self-tuning Histograms: Query Order Affecting Accuracy and Robustness , 2012, SSDBM.
[68] Christian S. Jensen,et al. Efficiently adapting graphical models for selectivity estimation , 2012, The VLDB Journal.
[69] Christopher Ré,et al. Understanding cardinality estimation using entropy maximization , 2012, ACM Trans. Database Syst..
[70] Cyrus Shahabi,et al. Entropy-based histograms for selectivity estimation , 2013, CIKM.
[71] Feifei Li,et al. Scalable histograms on large probabilistic data , 2014, KDD.
[72] Gustavo Alonso,et al. Histograms as a side effect of data movement for big data , 2014, SIGMOD Conference.
[73] Xuemin Lin,et al. Selectivity Estimation on Streaming Spatio-Textual Data Using Local Correlations , 2014, Proc. VLDB Endow..
[74] Norman May,et al. Exploiting ordered dictionaries to efficiently construct histograms with q-error guarantees in SAP HANA , 2014, SIGMOD Conference.
[75] Thierno M. O. Diallo,et al. Structural Equation Modeling: A Multidisciplinary Journal , 2014 .
[76] Calisto Zuzarte,et al. Cardinality estimation using neural networks , 2015, CASCON.
[77] Klemens Böhm,et al. Improving Accuracy and Robustness of Self-Tuning Histograms by Subspace Clustering , 2015, IEEE Trans. Knowl. Data Eng..
[78] Volker Markl,et al. Self-Tuning, GPU-Accelerated Kernel Density Models for Multidimensional Selectivity Estimation , 2015, SIGMOD Conference.
[79] Guillermo Sapiro,et al. Compressive Sensing by Learning a Gaussian Mixture Model From Measurements , 2015, IEEE Transactions on Image Processing.
[80] P. Visscher,et al. Simultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Model , 2015, PLoS genetics.
[81] Klemens Böhm,et al. Improving Accuracy and Robustness of Self-Tuning Histograms by Subspace Clustering , 2015, IEEE Transactions on Knowledge and Data Engineering.
[82] Peter Triantafillou,et al. Learning to accurately COUNT with query-driven predictive analytics , 2015, 2015 IEEE International Conference on Big Data (Big Data).
[83] Sridharakumar Narasimhan,et al. Unsupervised Segmentation of Cervical Cell Images Using Gaussian Mixture Model , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
[84] B. Muthén,et al. Structural Equation Models and Mixture Models With Continuous Nonnormal Skewed Distributions , 2016 .
[85] Carsten Binnig,et al. Revisiting Reuse for Approximate Query Processing , 2017, Proc. VLDB Endow..
[86] Manos Athanassoulis,et al. Access Path Selection in Main-Memory Optimized Data Systems: Should I Scan or Should I Probe? , 2017, SIGMOD Conference.
[87] Michael J. Cafarella,et al. Database Learning: Toward a Database that Becomes Smarter Every Time , 2017, SIGMOD Conference.
[88] Geoffrey J. Gordon,et al. Automatic Database Management System Tuning Through Large-scale Machine Learning , 2017, SIGMOD Conference.
[89] Ashwin Machanavajjhala,et al. Differentially Private Hierarchical Count-of-Counts Histograms , 2018, Proc. VLDB Endow..
[90] Lin Ma,et al. Query-based Workload Forecasting for Self-Driving Database Management Systems , 2018, SIGMOD Conference.
[91] Yen-Chi Chen. STAT 425 : Introduction to Nonparametric Statistics Winter 2018 Lecture 6 : Density Estimation : Histogram and Kernel Density Estimator , 2018 .
[92] Tim Kraska,et al. The Case for Learned Index Structures , 2018 .
[93] Xi Chen,et al. Deep Unsupervised Cardinality Estimation , 2019, Proc. VLDB Endow..
[94] Andreas Kipf,et al. Learned Cardinalities: Estimating Correlated Joins with Deep Learning , 2018, CIDR.
[95] Immanuel Trummer,et al. Exact Cardinality Query Optimization with Bounded Execution Cost , 2019, SIGMOD Conference.
[96] P. Abbeel,et al. Selectivity Estimation with Deep Likelihood Models , 2019, ArXiv.
[97] Tim Kraska,et al. Neo: A Learned Query Optimizer , 2019, Proc. VLDB Endow..
[98] Neo , 2019, Proceedings of the VLDB Endowment.
[99] Tim Kraska,et al. SageDB: A Learned Database System , 2019, CIDR.
[100] Srikanth Kandula,et al. Selectivity Estimation for Range Predicates using Lightweight Models , 2019, Proc. VLDB Endow..
[101] Dan Suciu,et al. Pessimistic Cardinality Estimation: Tighter Upper Bounds for Intermediate Join Cardinalities , 2019, SIGMOD Conference.