Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors

A novel class of amorphous MnO2 nanowires with a worm-like (WL) nanostructure was prepared by electrodeposition and a possible formation mechanism was proposed. The specific capacitance of WL amorphous MnO2 was 2–3 times larger than that of its crystalline cotton-like MnO2 counterpart. The unique WL amorphous nanostructure is believed to significantly facilitate the electrochemical performance of MnO2. Flexible solid-state symmetric supercapacitors assembled with WL-MnO2 electrodes exhibited a high energy density of 6.3 W h kg−1. These results demonstrate that the amorphous WL nanostructure grown on carbon fabric can serve as a promising electrode material for flexible and portable energy storage devices.

[1]  R. Penner,et al.  Mesoporous manganese oxide nanowires for high-capacity, high-rate, hybrid electrical energy storage. , 2011, ACS nano.

[2]  Hao Jiang,et al.  High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires , 2011 .

[3]  Teng Zhai,et al.  Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors , 2013 .

[4]  Y. Tong,et al.  3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. , 2013, Nanoscale.

[5]  Y. Tong,et al.  Design and synthesis of MnO₂/Mn/MnO₂ sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. , 2012, Nano letters.

[6]  Li Lu,et al.  MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors , 2010 .

[7]  Yexiang Tong,et al.  Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials , 2013, Nature Communications.

[8]  Xiaodong Wu,et al.  Graphene oxide--MnO2 nanocomposites for supercapacitors. , 2010, ACS nano.

[9]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[10]  Xu Xiao,et al.  Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible All‐Solid‐State Supercapacitors , 2013, Advanced materials.

[11]  Yang Li,et al.  Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. , 2013, ACS nano.

[12]  Genevieve Dion,et al.  Carbon coated textiles for flexible energy storage , 2011 .

[13]  Teng Zhai,et al.  H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors , 2013, Advanced materials.

[14]  W. Feng,et al.  Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors , 2012 .

[15]  Ran Liu,et al.  Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. , 2010, ACS nano.

[16]  Teng Zhai,et al.  WO3–x@Au@MnO2 Core–Shell Nanowires on Carbon Fabric for High‐Performance Flexible Supercapacitors , 2012, Advanced materials.

[17]  Jun Li,et al.  Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays , 2010 .

[18]  Y. Tong,et al.  Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances , 2011 .

[19]  Teng Zhai,et al.  Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor , 2011 .

[20]  Xiaohong Liu,et al.  Synthesis of MnO2 nanorods from a ZnO template and their capacitive performances , 2012 .

[21]  Yong Ding,et al.  Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. , 2013, ACS nano.

[22]  G. Cui,et al.  One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage , 2011 .

[23]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[24]  Xiaodong Li,et al.  Towards Textile Energy Storage from Cotton T‐Shirts , 2012, Advanced materials.

[25]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[26]  Zhenan Bao,et al.  Hybrid nanostructured materials for high-performance electrochemical capacitors , 2013 .

[27]  F. Wei,et al.  Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes , 2010 .

[28]  Jiajun Chen,et al.  Growth of monoclinic WO3nanowire array for highly sensitive NO2 detection , 2009 .

[29]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[30]  Zhong Lin Wang,et al.  Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode , 2010, Advanced materials.

[31]  S. Ramaprabhu,et al.  Polyaniline–MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte , 2011 .

[32]  Hao Jiang,et al.  Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. , 2011, Chemical communications.

[33]  Wen Chen,et al.  Polypyrrole-coated paper for flexible solid-state energy storage , 2013 .

[34]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[35]  Yu-Lun Chueh,et al.  Fiber-based all-solid-state flexible supercapacitors for self-powered systems. , 2012, ACS nano.

[36]  Teng Zhai,et al.  High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. , 2013, Nano letters.

[37]  D. D. Meng,et al.  Scalable high-power redox capacitors with aligned nanoforests of crystalline MnO₂ nanorods by high voltage electrophoretic deposition. , 2013, ACS nano.

[38]  Yi Xie,et al.  Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. , 2013, Nano letters.

[39]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[40]  K. Lian,et al.  Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics , 2013 .

[41]  Jyhfu Lee,et al.  Fabrication of Mn/Mn oxide core–shell electrodes with three-dimensionally ordered macroporous structures for high-capacitance supercapacitors , 2013 .

[42]  D. He,et al.  Preparation of nano-networks of MnO2 shell/Ni current collector core for high-performance supercapacitor electrodes , 2012 .

[43]  J. Zang,et al.  Electrophoretic deposition of MnO2-coated carbon nanotubes on a graphite sheet as a flexible electrode for supercapacitors , 2012 .

[44]  Wuzong Zhou,et al.  Nanoscale microelectrochemical cells on carbon nanotubes. , 2007, Small.

[45]  Hongcai Gao,et al.  High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. , 2012, ACS applied materials & interfaces.

[46]  A. Hirata,et al.  Enhanced supercapacitor performance of MnO2 by atomic doping. , 2013, Angewandte Chemie.

[47]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[48]  F. Béguin,et al.  Supercapacitors : materials, systems, and applications , 2013 .

[49]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[50]  Xu Xiao,et al.  WO3−x/MoO3−x Core/Shell Nanowires on Carbon Fabric as an Anode for All‐Solid‐State Asymmetric Supercapacitors , 2012 .

[51]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[52]  Songtao Lu,et al.  Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. , 2012, Nano letters.

[53]  M. Chigane,et al.  Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism , 2000 .

[54]  Xing Xie,et al.  High-performance nanostructured supercapacitors on a sponge. , 2011, Nano letters.