Analytic bond-order potential for predicting structural trends across the sp-valent elements

An analytic interatomic bond-order potential BOP is derived that depends explicitly on the group number of the sp-valent element. This is achieved by generalizing the previously published BOP for group-IV elements by extrapolating from half-full occupancy using a simple envelope function for the upper bound of the bond order. This interatomic potential predicts the structural trends across the sp-valent elements that are found by our tight-binding reference calculations and observed by experiment. Unlike empirical interatomic potentials this theoretically derived BOP includes the valence-dependent character of the bonding naturally within its remit.

[1]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[2]  D. Pettifor,et al.  Angularly dependent embedding potentials and structural prediction , 1994 .

[3]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[4]  Electronic charge densities and the recursion method , 1984 .

[5]  A. J. Skinner,et al.  Generating Transferable Tight-Binding Parameters: Application to Silicon , 1989 .

[6]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[7]  D. Pettifor,et al.  Atomistic modelling of TiAl I. Bond-order potentials with environmental dependence , 2003 .

[8]  G. K. Smelser The structure of the eye , 1961 .

[9]  C. Coulson,et al.  The Electronic Structure of Some Polyenes and Aromatic Molecules. VII. Bonds of Fractional Order by the Molecular Orbital Method , 1939 .

[10]  D. Pettifor,et al.  Bounded analytic bond-order potentials for sigma and pi bonds , 2000, Physical review letters.

[11]  Aoki,et al.  Bond-order potentials: Theory and implementation. , 1996, Physical review. B, Condensed matter.

[12]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[13]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[14]  D. Pettifor,et al.  New many-body potential for the bond order. , 1989, Physical review letters.

[15]  Aoki,et al.  Rapidly convergent bond order expansion for atomistic simulations. , 1993, Physical review letters.

[16]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[17]  Haydn N. G. Wadley,et al.  Analytic bond-order potentials for multicomponent systems , 2004 .

[18]  D. Pettifor,et al.  Bonding and structure of intermetallics: a new bond order potential , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[19]  D. G. Pettifor,et al.  Bonding and Structure of Molecules and Solids , 1995 .

[20]  David G. Pettifor,et al.  Interatomic bond-order potentials and structural prediction , 2004 .

[21]  D. G. Pettifor,et al.  Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory , 1999 .

[22]  Kai Nordlund,et al.  Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs , 2002 .

[23]  Modelling diamond-like carbon with the environment-dependent interaction potential , 2002 .

[24]  David G. Pettifor,et al.  Analytic bond-order potential for open and close-packed phases , 2002 .

[25]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[26]  M. Finnis,et al.  Interatomic Forces in Condensed Matter , 2003 .

[27]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[28]  D. Pettifor,et al.  Origin of Brittle Cleavage in Iridium , 2005, Science.

[29]  D. Pettifor,et al.  The structures of binary compounds. I. Phenomenological structure maps , 1986 .

[30]  E. Kaxiras,et al.  Environment-dependent interatomic potential for bulk silicon , 1997, cond-mat/9704137.

[31]  M. Lannoo,et al.  Trends in the cohesive properties of sp bonded elements , 1983 .

[32]  Che Ting Chan,et al.  A transferable tight-binding potential for carbon , 1992 .

[33]  David G. Pettifor,et al.  Bond-order potential for molybdenum: Application to dislocation behavior , 2004 .

[34]  Foiles Interatomic interactions for Mo and W based on the low-order moments of the density of states. , 1993, Physical review. B, Condensed matter.

[35]  J. Inoue,et al.  Orbital symmetrisation of the recursion method , 1987 .

[36]  D. Pettifor,et al.  Theory of structural trends within the sp bonded elements , 1991 .

[37]  E. Kaxiras,et al.  INTERATOMIC POTENTIAL FOR SILICON DEFECTS AND DISORDERED PHASES , 1997, cond-mat/9712058.

[38]  D. Pettifor From Exact to Approximate Theory: The Tight Binding Bond Model and Many-Body Potentials , 1990 .

[39]  J. Burdett Chemical Bonding in Solids , 1995 .

[40]  F. Cyrot-Lackmann On the electronic structure of liquid transitional metals , 1967 .