A 1.85fW/bit ultra low leakage 10T SRAM with speed compensation scheme
暂无分享,去创建一个
David Blaauw | Gregory K. Chen | Dennis Sylvester | Daeyeon Kim | Mingoo Seok | Matthew Fojtik | D. Blaauw | D. Sylvester | Matthew R. Fojtik | Daeyeon Kim | Mingoo Seok
[1] K.Y. Lee,et al. A 0.18 /spl mu/m CMOS logic technology with dual gate oxide and low-k interconnect for high-performance and low-power applications , 1999, 1999 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.99CH36325).
[2] Anna W. Topol,et al. Stable SRAM cell design for the 32 nm node and beyond , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..
[3] H. Mair,et al. A 65-nm Mobile Multimedia Applications Processor with an Adaptive Power Management Scheme to Compensate for Variations , 2007, 2007 IEEE Symposium on VLSI Circuits.
[4] Jason Liu,et al. A voltage scalable 0.26V, 64kb 8T SRAM with Vmin lowering techniques and deep sleep mode , 2008, 2008 IEEE Custom Integrated Circuits Conference.
[5] C.H. Kim,et al. A 0.2 V, 480 kb Subthreshold SRAM With 1 k Cells Per Bitline for Ultra-Low-Voltage Computing , 2008, IEEE Journal of Solid-State Circuits.
[6] A.P. Chandrakasan,et al. A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy , 2008, IEEE Journal of Solid-State Circuits.
[7] C.H. Kim,et al. A Voltage Scalable 0.26 V, 64 kb 8T SRAM With V$_{\min}$ Lowering Techniques and Deep Sleep Mode , 2008, IEEE Journal of Solid-State Circuits.
[8] Daeyeon Kim,et al. A Low-Voltage Processor for Sensing Applications With Picowatt Standby Mode , 2009, IEEE Journal of Solid-State Circuits.
[9] David Blaauw,et al. Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).