Aligning Fe2O3 photo-sheets on TiO2 nanofibers with hydrophilic and aerophobic surface for boosting photoelectrochemical performance

[1]  Jiaguo Yu,et al.  Challenges for photocatalytic overall water splitting , 2022, Chem.

[2]  David J. Singh,et al.  Favorable Energy Band Alignment of TiO2 Anatase/Rutile Heterophase Homojunctions Yields Photocatalytic Hydrogen Evolution with Quantum Efficiency Exceeding 45.6% , 2022, Advanced Energy Materials.

[3]  Kun Chen,et al.  Achieving Highly Efficient pH-Universal Hydrogen Evolution by Superhydrophilic Amorphous/Crystalline Rh(OH)3/NiTe Coaxial Nanorod Array Electrode , 2022, Applied Catalysis B: Environmental.

[4]  S. Jayachitra,et al.  Highly conductive NiSe2 nanoparticle as a co-catalyst over TiO2 for enhanced photocatalytic hydrogen production , 2022, Applied Catalysis B: Environmental.

[5]  Haibo Zhang,et al.  Advanced Catalysts for Photoelectrochemical Water Splitting , 2021, ACS Applied Energy Materials.

[6]  Xi‐lan Feng,et al.  Layer‐by‐Layer Electrodeposition of FTO/TiO 2 /Cu x O/CeO 2 (1 < x < 2) Photocatalysts with High Peroxidase‐Like Activity by Greatly Enhanced Singlet Oxygen Generation , 2021, Small Methods.

[7]  Deliang Chen,et al.  Coupling effects of indium oxide layer on hematite enabling efficient photoelectrochemical water splitting , 2021 .

[8]  Mingxuan Sun,et al.  Decoration of γ-graphyne on TiO2 nanotube arrays: Improved photoelectrochemical and photoelectrocatalytic properties , 2021 .

[9]  Kwanghee Lee,et al.  Efficient and Stable Perovskite‐Based Photocathode for Photoelectrochemical Hydrogen Production , 2021, Advanced Functional Materials.

[10]  Y. Xiong,et al.  Time‐Resolved X‐Ray Absorption Spectroscopy: Visualizing the Time Evolution of Photophysics and Photochemistry in Photocatalytic Solar Energy Conversion , 2020, Solar RRL.

[11]  Yunqian Dai,et al.  Graphene-based modulation on the hierarchical growth of Al2O3 heterojunctions outside TiO2 nanofibers via a surfactant-free approach , 2020 .

[12]  Nurul Aida Mohamed,et al.  Rapid fabrication of oxygen defective α-Fe2O3(110) for enhanced photoelectrochemical activities. , 2020, Dalton transactions.

[13]  K. Chahrour,et al.  Water-splitting properties of bi-phased TiO2 nanotube arrays subjected to high-temperature annealing , 2020 .

[14]  Shaohua Shen,et al.  Function-switchable metal/semiconductor junction enables efficient photocatalytic overall water splitting with selective water oxidation products. , 2020, Science bulletin.

[15]  Quanguo He,et al.  Recent progress on photocatalytic heterostructures with full solar spectral responses , 2020 .

[16]  Lei Jiang,et al.  Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces , 2020, Nature Communications.

[17]  Fangbai Li,et al.  Conduction Band of Hematite Can Mediate Cytochrome Reduction by Fe(II) Under Dark and Anoxic Conditions. , 2020, Environmental science & technology.

[18]  S. Ramakrishna,et al.  Graphene-Based Modulation on the Growth of Urchin-like Na2Ti3O7 Microspheres for Photothermally Enhanced H2 Generation from Ammonia Borane , 2020 .

[19]  H. Gardeniers,et al.  Influence of Bubbles on the Energy Conversion Efficiency of Electrochemical Reactors , 2020, Joule.

[20]  Jianhui Yang,et al.  Coupling of Hierarchical Al2O3/TiO2 Nanofibers into 3D Photothermal Aerogels Toward Simultaneous Water Evaporation and Purification , 2020, Advanced Fiber Materials.

[21]  S. Abanades,et al.  High Photothermally Active Fe2O3 Film for CO2 Photoreduction with H2O Driven by Solar Light , 2019 .

[22]  Fan Feng,et al.  Boosting hematite photoelectrochemical water splitting by decoration of TiO2 at the grain boundaries , 2019, Chemical Engineering Journal.

[23]  S. Ramakrishna,et al.  Surface Engineering of Defective Hematite Nanostructures Coupled by Graphene Sheets with Enhanced Photoelectrochemical Performance , 2019, ACS Sustainable Chemistry & Engineering.

[24]  Xian-liang Song,et al.  Synthesis of GO/TiO2/Bi2WO6 nanocomposites with enhanced visible light photocatalytic degradation of ethylene , 2019, Applied Catalysis B: Environmental.

[25]  Bin Wang,et al.  Tuning Oxygen Vacancies in Ultrathin TiO2 Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm , 2019, Advanced materials.

[26]  Geoffrey I N Waterhouse,et al.  Photoelectrochemical biosensor for microRNA detection based on a MoS2/g-C3N4/black TiO2 heterojunction with Histostar@AuNPs for signal amplification. , 2019, Biosensors & bioelectronics.

[27]  R. Doong,et al.  Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light. , 2019, The Science of the total environment.

[28]  S. Bai,et al.  An Integrating Photoanode of WO3/Fe2O3 Heterojunction Decorated with NiFe-LDH to Improve PEC Water Splitting Efficiency , 2018, ACS Sustainable Chemistry & Engineering.

[29]  Yuanyuan Ma,et al.  Leaf‐Mosaic‐Inspired Vine‐Like Graphitic Carbon Nitride Showing High Light Absorption and Efficient Photocatalytic Hydrogen Evolution , 2018, Advanced Energy Materials.

[30]  S. Dong,et al.  Ferroelectric ferrimagnetic LiFe 2 F 6 : Charge-ordering-mediated magnetoelectricity , 2017, 1711.06981.

[31]  L. Cui,et al.  Localized Defects on Copper Sulfide Surface for Enhanced Plasmon Resonance and Water Splitting. , 2017, Small.

[32]  Jia Yang,et al.  Novel Iron/Cobalt‐Containing Polypyrrole Hydrogel‐Derived Trifunctional Electrocatalyst for Self‐Powered Overall Water Splitting , 2017 .

[33]  T. Weller,et al.  Hollow α-Fe2O3 nanofibres for solar water oxidation: improving the photoelectrochemical performance by formation of α-Fe2O3/ITO-composite photoanodes , 2016 .

[34]  Bowen Zhu,et al.  Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. , 2016, Nanoscale.

[35]  Porun Liu,et al.  Engineered Hematite Mesoporous Single Crystals Drive Drastic Enhancement in Solar Water Splitting. , 2016, Nano letters.

[36]  L. Yanchun,et al.  Atmospheric-pressure cold plasma for fabrication of anatase–rutile mixed TiO2 with the assistance of ionic liquid , 2015 .

[37]  T. Lian,et al.  Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition , 2015, Science.

[38]  Yang-Fan Xu,et al.  Recent advances in hierarchical macroporous composite structures for photoelectric conversion , 2014 .

[39]  F. Prinz,et al.  Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. , 2014, Nano letters.

[40]  G. Rahman,et al.  Electrodeposited nanostructured α-Fe2O3 thin films for solar water splitting: Influence of Pt doping on photoelectrochemical performance , 2013 .

[41]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[42]  Guohua Chen,et al.  Photoelectrocatalytic materials for environmental applications , 2009 .

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  Robert M. Hazen,et al.  Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars , 1980 .