Evaluation of the reconstruction limits of a frequency-independent crosshole georadar waveform inversion scheme in the presence of dispersion

Abstract Waveform tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of pertinent petrophysical parameters with extremely high spatial resolution. All current crosshole georadar waveform inversion strategies are based on the assumption of frequency-independent electromagnetic constitutive parameters. However, in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behavior. In this paper, we evaluate synthetically the reconstruction limits of a recently published crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. Our results indicate that, when combined with a source wavelet estimation procedure that provides a means of partially accounting for the frequency-dependent effects through an “effective” wavelet, the inversion algorithm performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.

[1]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[2]  A. P. Annan,et al.  Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy , 1989 .

[3]  J. Tronicke,et al.  Quantitative integration of hydrogeophysical data: Conditional geostatistical simulation for characterizing heterogeneous alluvial aquifers , 2004 .

[4]  P. Mora Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .

[5]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[6]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[7]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[8]  Seiichiro Kuroda,et al.  Full-waveform inversion algorithm for interpreting crosshole radar data: a theoretical approach , 2007 .

[9]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[10]  Greg Turner Subsurface radar propagation deconvolution , 1994 .

[11]  R. Pratt Inverse theory applied to multisource cross-hole tomography, Part2 : Elastic wave-equation method , 1990 .

[12]  John H. Bradford,et al.  Frequency-dependent attenuation analysis of ground-penetrating radar data , 2007 .

[13]  Joakim O. Blanch,et al.  Modeling of a constant Q; methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique , 1995 .

[14]  A. P. Annan Transmission Dispersion and GPR , 1996 .

[15]  George V. Keller,et al.  Rock and Mineral Properties , 2011 .

[16]  Gary R. Olhoeft,et al.  Petrophysical causes of electromagnetic dispersion , 1994 .

[17]  José M. Carcione,et al.  Ground‐penetrating radar: Wave theory and numerical simulation in lossy anisotropic media , 1996 .

[18]  George A. McMechan,et al.  GPR attenuation and its numerical simulation in 2.5 dimensions , 1997 .

[19]  M. Toksöz,et al.  Simultaneous reconstruction of permittivity and conductivity for crosshole geometries , 1990 .

[20]  S. Ward,et al.  Linear System Description of the Electrical Parameters of Rocks , 1970 .

[21]  S. Kuroda,et al.  A Full Waveforminversion Algorithm for Interpreting Crosshole Radar Data , 2007, 2007 4th International Workshop on, Advanced Ground Penetrating Radar.

[22]  Chaoguang Zhou,et al.  Radar-diffraction tomography using the modified quasi-linear approximation , 2000, IEEE Trans. Geosci. Remote. Sens..

[23]  Weng Cho Chew,et al.  An iterative solution of the two‐dimensional electromagnetic inverse scattering problem , 1989, Int. J. Imaging Syst. Technol..

[24]  José M. Carcione,et al.  On the acoustic-electromagnetic analogy , 1995 .

[25]  R. Jeanloz,et al.  Introduction to the physics of rocks , 1994 .

[26]  Joakim O. Blanch,et al.  Viscoelastic finite-difference modeling , 1994 .

[27]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[28]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[29]  Misac N. Nabighian,et al.  Electromagnetic Methods in Applied Geophysics , 1988 .

[30]  Jacques R. Ernst,et al.  A New Vector Waveform Inversion Algorithm for Simultaneous Updating of Conductivity and Permittivity Parameters From Combination Crosshole/Borehole-to-Surface GPR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[31]  R. Shipp,et al.  Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data , 1999 .

[32]  Fabrice Hollender,et al.  Modeling ground‐penetrating radar wave propagation and reflection with the Jonscher parameterization , 1998 .

[33]  A. T. Hoop,et al.  Handbook of Radiation and Scattering of Waves: Acoustic Waves in Fluids, Elastic Waves in Solids, Electromagnetic Waves , 2001 .

[34]  M. Bano Constant dielectric losses of ground‐penetrating radar waves , 1996 .

[35]  S. Greenhalgh,et al.  Crosshole seismic inversion with normalized full‐waveform amplitude data , 2003 .

[36]  A. P. Annan,et al.  Electromagnetic determination of soil water content: Measurements in coaxial transmission lines , 1980 .

[37]  Thomas H. Jordan,et al.  Stochastic Modeling of Seafloor Morphology: Inversion of Sea Beam Data for Second-Order Statistics , 1988 .

[38]  Weng Cho Chew,et al.  Nonlinear two-dimensional velocity profile inversion using time domain data , 1992, IEEE Trans. Geosci. Remote. Sens..

[39]  J. Robertsson,et al.  Finite‐difference modeling of electromagnetic wave propagation in dispersive and attenuating media , 1998 .

[40]  C. Zener Elasticity and anelasticity of metals , 1948 .

[41]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[42]  James Irving,et al.  Removal of Wavelet Dispersion from Ground-Penetrating Radar Data , 2003 .

[43]  Jacques R. Ernst,et al.  Application of a new 2D time-domain full-waveform inversion scheme to crosshole radar data , 2007 .

[44]  W. Chew,et al.  Diffraction tomographic algorithm for the detection of three-dimensional objects buried in a lossy half-space , 2002 .

[45]  W. Chew,et al.  Study of some practical issues in inversion with the Born iterative method using time-domain data , 1993 .

[46]  Greg Turner,et al.  Constant Q attenuation of subsurface radar pulses , 1994 .

[47]  Jacques R. Ernst,et al.  Evaluation of the viability and robustness of an iterative deconvolution approach for estimating the source wavelet during waveform inversion of crosshole ground-penetrating radar data , 2009 .

[48]  A. Pica,et al.  Nonliner inversion of seismic reflection data in a laterally invariant medium , 1990 .

[49]  Klaus Holliger,et al.  Inversion of crosshole seismic data in heterogeneous environments: Comparison of waveform and ray-based approaches , 2009 .

[50]  Weng Cho Chew,et al.  Novel diffraction tomographic algorithm for imaging two-dimensional targets buried under a lossy Earth , 2000, IEEE Trans. Geosci. Remote. Sens..

[51]  Siyuan Chen,et al.  Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method , 2001, IEEE Trans. Geosci. Remote. Sens..

[52]  Jacques R. Ernst,et al.  Full-Waveform Inversion of Crosshole Radar Data Based on 2-D Finite-Difference Time-Domain Solutions of Maxwell's Equations , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Maksim Bano,et al.  Modelling of GPR waves for lossy media obeying a complex power law of frequency for dielectric permittivity , 2004 .

[54]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[55]  Klaus Holliger,et al.  Simulated-annealing-based conditional simulation for the local-scale characterization of heterogeneous aquifers , 2009 .

[56]  A. Tarantola A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .

[57]  Weng Cho Chew,et al.  Comparison of the born iterative method and tarantola's method for an electromagnetic time‐domain inverse problem , 1991, Int. J. Imaging Syst. Technol..

[58]  Zhonghua Wu,et al.  Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media , 1996 .

[59]  K. Nihei,et al.  Viscoacoustic wave form inversion of transmission data for velocity and attenuation , 2004 .

[60]  R. White,et al.  The accuracy of estimating Q from seismic data , 1992 .