Nonlocal microplane model with strain-softening yield limits

The paper deals with the problem of nonlocal generalization of constitutive models such as microplane model M4 for concrete, in which the yield limits, called stress–strain boundaries, are softening functions of the total strain. Such constitutive models call for a different nonlocal generalization than those for continuum damage mechanics, in which the total strain is reversible, or for plasticity, in which there is no memory of the initial state. In the proposed nonlocal formulation, the softening yield limit is a function of the spatially averaged nonlocal strains rather than the local strains, while the elastic strains are local. It is demonstrated analytically as well numerically that, with the proposed nonlocal model, the tensile stress across the strain localization band at very large strain does soften to zero and the cracking band retains a finite width even at very large tensile strain across the band only if one adopts an ‘‘over-nonlocal’’ generalization of the type proposed by Vermeer and Brinkgreve [In: Chambon, R., Desrues, J., Vardoulakis, I. (Eds.), Localisation and Bifurcation Theory for Soils and Rocks, Balkema, Rotterdam, 1994, p. 89] (and also used by Planas et al. [Basic issue of nonlocal models: uniaxial modeling, Tecnical Report 96-jp03, Departamento de Ciencia de Materiales, Universidad Politecnica de Madrid, Madrid, Spain, 1996], and by Str€ and Ristinmaa [Comput. Meth. Appl. Mech. Eng. 136 (1996) 127]). Numerical finite element studies document the avoidance of spurious mesh sensitivity and mesh orientation bias, and demonstrate objectivity and size effect. 2004 Elsevier Ltd. All rights reserved.

[1]  Hussein M. Zbib,et al.  On the localization and postlocalization behavior of plastic deformation. II: On the evolution and thickness of shear bands , 1988 .

[2]  Alberto Carpinteri,et al.  Quasibrittle fracture scaling and size effect , 2004 .

[3]  Zdenek P. Bazant,et al.  Nonlocal Damage Theory Based on Micromechanics of Crack Interactions , 1994 .

[4]  Zdenek P. Bazant,et al.  Microplane Constitutive Model and Metal Plasticity , 2000 .

[5]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[6]  A. Cemal Eringen,et al.  A unified theory of thermomechanical materials , 1966 .

[7]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[8]  Ferhun C. Caner,et al.  Vertex Effect in Strain-Softening Concrete at Rotating Principal Axes , 2002 .

[9]  Zdenek P. Bazant,et al.  Imbricate continuum and its variational derivation , 1984 .

[10]  J. Prévost,et al.  Dynamic strain localization in elasto-(visco-)plastic solids, Part 1. General formulation and one-dimensional examples , 1990 .

[11]  S. Xia,et al.  A nonlocal damage theory , 1987 .

[12]  Ignacio Carol,et al.  Damage and plasticity in microplane theory , 1997 .

[13]  Z. Bažant,et al.  Nonlocal Smeared Cracking Model for Concrete Fracture , 1988 .

[14]  Milan Jirásek,et al.  Nonlocal models for damage and fracture: Comparison of approaches , 1998 .

[15]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[16]  M. Elices,et al.  Cohesive cracks versus nonlocal models: Closing the gap , 1993 .

[17]  Zdenek P. Bazant,et al.  Microplane Model for Concrete , 1996 .

[18]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[19]  Ferhun C. Caner,et al.  Microplane Model M4 for Concrete. I: Formulation with Work-Conjugate Deviatoric Stress , 2000 .

[20]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[21]  Surendra P. Shah,et al.  Fracture mechanics of concrete , 1995 .

[22]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[23]  Ioannis Vardoulakis,et al.  A gradient flow theory of plasticity for granular materials , 1991 .

[24]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[25]  Byung H. Oh,et al.  Microplane Model for Progressive Fracture of Concrete and Rock , 1985 .

[26]  Pere C. Prat,et al.  Microplane Model for Concrete. I: Stress-Strain Boundaries and Finite Strain , 1996 .

[27]  Ferhun C. Caner,et al.  MICROPLANE MODEL M4 FOR CONCRETE: II. ALGORITHM AND CALIBRATION , 2000 .

[28]  R. Borst SIMULATION OF STRAIN LOCALIZATION: A REAPPRAISAL OF THE COSSERAT CONTINUUM , 1991 .

[29]  Z. Bažant,et al.  Nonlocal microplane model for fracture, damage, and size effect in structures , 1990 .

[30]  K. Willam,et al.  Localization within the Framework of Micropolar Elasto-Plasticity , 1991 .

[31]  Z. Bažant,et al.  Scaling theory for quasibrittle structural failure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Ferhun C. Caner,et al.  MICROPLANE MODEL M5 WITH KINEMATIC AND STATIC CONSTRAINTS FOR CONCRETE FRACTURE AND ANELASTICITY. II: COMPUTATION , 2005 .

[33]  T. Belytschko,et al.  Localization limiters in transient problems , 1988 .

[34]  E. Kröner,et al.  Elasticity theory of materials with long range cohesive forces , 1967 .

[35]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[36]  A. Ratti,et al.  Anchorages in normal and high performance concretes subjected to medium and high strain rates – Final Report , 2001 .

[37]  Zdeněk P. Bažant,et al.  Non-local yield limit degradation , 1988 .

[38]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[39]  Matti Ristinmaa,et al.  FE-formulation of a nonlocal plasticity theory , 1996 .

[40]  Pere C. Prat,et al.  Microplane Model for Brittle-Plastic Material: I. Theory , 1988 .

[41]  Milan Jirásek,et al.  Comparison of integral-type nonlocal plasticity models for strain-softening materials , 2003 .

[42]  Aurelio Muttoni,et al.  Fracture and Damage in Quasibrittle Structures , 1994 .

[43]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[44]  Z. Bažant,et al.  Nonlocal Continuum Damage, Localization Instability and Convergence , 1988 .

[45]  H.E.J.G. Schlangen,et al.  Experimental and numerical analysis of fracture processes in concrete : proefschrift , 1993 .

[46]  A. Needleman Material rate dependence and mesh sensitivity in localization problems , 1988 .

[47]  Zdenek P. Bazant,et al.  Instability, Ductility, and Size Effect in Strain-Softening Concrete , 1978 .

[48]  Z. Bažant,et al.  Determination of Fracture Energy from Size Effect and Brittleness Number , 1987 .

[49]  D. Muir Wood,et al.  Localisation and bifurcation theory for soils and rocks , 1998 .

[50]  Mark D. Adley,et al.  Microplane Model for Concrete: II: Data Delocalization and Verification , 1996 .

[51]  Milan Jirásek,et al.  On regularized plasticity models for strain-softening materials , 2001 .

[52]  I. Vardoulakis,et al.  The thickness of shear bands in granular materials , 1987 .

[53]  Zdenek P. Bazant,et al.  Microplane Model for Brittle‐Plastic Material: II. Verification , 1988 .

[54]  Jacky Mazars,et al.  Prediction of the failure and size effect in concrete via a bi-scale damage approach , 1992 .

[55]  J. Pamin,et al.  Gradient-dependent plasticity in numerical simulation of localization phenomena , 1994 .

[56]  Ted Belytschko,et al.  Wave propagation in a strain-softening bar: Exact solution , 1985 .

[57]  Joško Ožbolt,et al.  NUMERICAL SMEARED FRACTURE ANALYSIS: NONLOCAL MICROCRACK INTERACTION APPROACH , 1996 .

[58]  Z. Bažant,et al.  Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories , 1993 .

[59]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[60]  Zdeněk P. Bažant,et al.  Stability against localization of softening into ellipsoids and bands: Parameter study , 1989 .

[61]  Daichao Sheng,et al.  Accelerated initial stiffness schemes for elastoplasticity , 2000 .