Three proteins related to vitamin B12 metabolism in diatoms were quantified via selected reaction monitoring mass spectrometry: B12-dependent and B12-independent methionine synthase (MetH, MetE) and a B12 acquisition protein (CBA1). B12-mediated interreplacement of MetE and MetH metalloenzymes was observed in Phaeodactylum tricornutum where MetH abundance was highest (0.06 fmol µg−1 protein) under high B12 and MetE abundance increased to 3.25 fmol µg−1 protein under low B12 availability. Maximal MetE abundance was 60-fold greater than MetH, consistent with the expected ∼ 50–100-fold larger turnover number for MetH. MetE expression resulted in 30-fold increase in nitrogen and 40-fold increase in zinc allocated to methionine synthase activity under low B12. CBA1 abundance was 6-fold higher under low-B12 conditions and increased upon B12 resupply to starved cultures. While biochemical pathways that supplant B12 requirements exist and are utilized by organisms such as land plants, B12 use persists in eukaryotic phytoplankton. This study suggests that retention of B12 utilization by phytoplankton results in resource conservation under conditions of high B12 availability. MetE and MetH abundances were also measured in diatom communities from McMurdo Sound, verifying that both these proteins are expressed in natural communities. These protein measurements are consistent with previous studies suggesting that B12 availability influences Antarctic primary productivity. This study illuminates controls on expression of B12-related proteins, quantitatively assesses the metabolic consequences of B12 deprivation, and demonstrates that mass spectrometry-based protein measurements yield insight into the functioning of marine microbial communities.