SPUD - Semantic Processing of Urban Data

Abstract We present SPUD , a semantic environment for cataloging, exploring, integrating, understanding, processing and transforming urban information. A series of challenges are identified: namely, the heterogeneity of the domain and the impracticality of a common model, the volume of information and the number of data sets, the requirement for a low entry threshold to the system, the diversity of the input data, in terms of format, syntax and update frequency (streams vs static data), the complex data dependencies and the sensitivity of the information. We propose an approach for the incremental and continuous integration of static and streaming data, based on Semantic Web technologies and apply our technology to a traffic diagnosis scenario. We demonstrate our approach through a system operating on real data in Dublin and we show that semantic technologies can be used to obtain business results in an environment with hundreds of heterogeneous datasets coming from distributed data sources and spanning multiple domains.

[1]  James A. Hendler,et al.  TWC LOGD: A portal for linked open government data ecosystems , 2011, J. Web Semant..

[2]  Philip S. Yu,et al.  Privacy-preserving data publishing: A survey of recent developments , 2010, CSUR.

[3]  Julian Dolby,et al.  Building an efficient RDF store over a relational database , 2013, SIGMOD '13.

[4]  Raymond Reiter,et al.  Characterizing Diagnoses and Systems , 1992, Artif. Intell..

[5]  Takahiro Kawamura,et al.  Semantic Matching of Web Services Capabilities , 2002, SEMWEB.

[6]  Timothy W. Finin,et al.  RDF123: From Spreadsheets to RDF , 2008, SEMWEB.

[7]  Raphaël Troncy,et al.  Enabling Linked Data Publication with the Datalift Platform , 2012, Semantic Cities @ AAAI.

[8]  Shengbing Jiang,et al.  Failure diagnosis of discrete-event systems with linear-time temporal logic specifications , 2004, IEEE Transactions on Automatic Control.

[9]  John Darlington,et al.  Unlocking the Potential of Public Sector Information with Semantic Web Technology , 2007, ISWC/ASWC.

[10]  Alon Y. Halevy Structured Data on the Web , 2009, NGITS.

[11]  Ian Horrocks,et al.  A Software Framework for Matchmaking Based on Semantic Web Technology , 2004, Int. J. Electron. Commer..

[12]  Bijan Parsia,et al.  Debugging OWL ontologies , 2005, WWW '05.

[13]  Shengbing Jiang,et al.  Failure diagnosis of discrete event systems with linear-time temporal logic fault specifications , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[14]  Vanessa López,et al.  Guided exploration and integration of urban data , 2013, HT '13.

[15]  Carlo Ratti,et al.  The Geography of Taste: Analyzing Cell-Phone Mobility and Social Events , 2010, Pervasive.

[16]  Freddy Lécué,et al.  Westland row why so slow?: fusing social media and linked data sources for understanding real-time traffic conditions , 2013, IUI '13.

[17]  Spyros Kotoulas,et al.  QuerioCity: A Linked Data Platform for Urban Information Management , 2012, International Semantic Web Conference.

[18]  Freddy Lécué,et al.  Applying Semantic Web Technologies for Diagnosing Road Traffic Congestions , 2012, International Semantic Web Conference.

[19]  Francesco M. Donini,et al.  Abductive Matchmaking using Description Logics , 2003, IJCAI.

[20]  Meir Kalech,et al.  Model-Based Diagnosis with Multi-Label Classification , 2011 .

[21]  Vassilios Peristeras,et al.  A Publishing Pipeline for Linked Government Data , 2012, ESWC.

[22]  Vanessa López,et al.  EXSED: An Intelligent Tool for Exploration of Social Events Dynamics from Augmented Trajectories , 2013, 2013 IEEE 14th International Conference on Mobile Data Management.