Semi-nonparametric estimates of interfuel substitution in U.S. energy demand

This paper focuses on the demand for crude oil, natural gas, and coal in the United States in the context of two globally flexible functional forms - the Fourier and the Asymptotically Ideal Model (AIM) - estimated subject to full regularity, using methods suggested over 20 years ago by Gallant and Golub [Gallant, A. Ronald and Golub, Gene H. Imposing Curvature Restrictions on Flexible Functional Forms. Journal of Econometrics 26 (1984), 295-321] and recently used by Serletis and Shahmoradi [Serletis, A., Shahmoradi, A., 2005. Semi-nonparametric estimates of the demand for money in the United States. Macroeconomic Dynamics 9, 542-559] in the monetary demand systems literature. We provide a comparison in terms of a full set of elasticities and also a policy perspective, using (for the first time) parameter estimates that are consistent with global regularity.

[1]  William A. Barnett,et al.  Regularity of the Generalized Quadratic Production Model: A Counterexample , 2003 .

[2]  Brian J. Eastwood,et al.  Adaptive Rules for Seminonparametric Estimators That Achieve Asymptotic Normality , 1991, Econometric Theory.

[3]  William A. Barnett,et al.  The Müntz-Szatz demand system , 1983 .

[4]  Christopher A. Sims,et al.  Advances in Econometrics , 1996 .

[5]  Gene H. Golub,et al.  Imposing curvature restrictions on flexible functional forms , 1984 .

[6]  D. Jorgenson,et al.  Transcendental Logarithmic Utility Functions , 1975 .

[7]  T. Considine Separability, functional form and regulatory policy in models of interfuel substitution , 1989 .

[8]  Clifton T Jones A Dynamic Analysis of Interfuel Substitution in U.S. Industrial Energy Demand , 1995 .

[9]  William A. Barnett,et al.  The Muntz-Szatz demand system: An application of a globally well behaved series expansion , 1983 .

[10]  John P. Weyant,et al.  Industrial energy demand: a simple structural approach , 1988 .

[11]  A. Ronald Gallant,et al.  On unification of the asymptotic theory of nonlinear econometric models , 1982 .

[12]  A. Zellner An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias , 1962 .

[13]  Giovanni Urga,et al.  Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand , 2003 .

[14]  A. Gallant,et al.  On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form , 1981 .

[15]  R. Pindyck The Structure of World Energy Demand , 1979 .

[16]  Apostolos Serletis,et al.  SEMI-NONPARAMETRIC ESTIMATES OF THE DEMAND FOR MONEY IN THE UNITED STATES , 2005, Macroeconomic Dynamics.

[17]  A. Gallant,et al.  Unbiased determination of production technologies , 1982 .