Scaling diode-pumped, high energy picosecond lasers to kilowatt average powers

Recent results in the development of diode-driven high energy, high repetition rate, picosecond lasers, including the demonstration of a cryogenic Yb:YAG active mirror amplifier that produces 1.5 J pulses at 500 Hz repetition rate (0.75 kW average power) are reviewed. These pulses are compressed resulting in the generation of ${\sim}5~\text{ps}$ duration, 1 J pulses with 0.5 kW average power. A full characterization of this high power cryogenic amplifier, including at-wavelength interferometry of the active region under ${>}1~\text{kW}$ average power pump conditions, is presented. An initial demonstration of operation at 1 kW average power (1 J, 1 kHz) is reported.

[1]  Alfred Leitenstorfer,et al.  615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate. , 2016, Optics letters.

[2]  K. Y. Kim,et al.  Intense terahertz generation in two-color laser filamentation: energy scaling with terawatt laser systems , 2013 .

[3]  S. G. Anderson,et al.  Design and operation of a tunable MeV-level Compton-scattering-based γ-ray source , 2010 .

[4]  Ferenc Krausz,et al.  1  kW, 200  mJ picosecond thin-disk laser system. , 2017, Optics letters.

[5]  Yong Wang,et al.  Relativistic plasma nanophotonics for ultrahigh energy density physics , 2013, Nature Photonics.

[6]  Ferenc Krausz,et al.  High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification. , 2009, Optics letters.

[7]  P. Nickles,et al.  High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy. , 2009, Optics letters.

[8]  Huseyin Cankaya,et al.  Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers. , 2015, Optics letters.

[9]  Dinesh Patel,et al.  Demonstration of a 100 Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser. , 2012, Optics letters.

[10]  François Légaré,et al.  Highly stable, 54mJ Yb-InnoSlab laser platform at 0.5kW average power , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[11]  B. Schmidt,et al.  Frequency domain optical parametric amplification , 2014, Nature Communications.

[12]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[13]  S. Shaw,et al.  Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG. , 2011, Optics letters.

[14]  Franz X Kärtner,et al.  High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. , 2013, Optics letters.

[15]  Patrick Georges,et al.  Broadband high-energy diode-pumped Yb:KYW multipass amplifier. , 2011, Optics letters.

[16]  Patrice Camy,et al.  Yb:CaF2 — a new old laser crystal , 2009 .

[17]  F. Krausz,et al.  High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers. , 2011, Optics express.

[18]  Robert Jung,et al.  Thin-disk ring amplifier for high pulse energy. , 2016, Optics express.

[19]  Benjamin J Eggleton,et al.  High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier. , 2010, Optics letters.

[20]  T. Y. Fan,et al.  Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range , 2005 .

[21]  Tso Yee Fan,et al.  Cryogenic Yb 3+ -doped materials for pulsed solid-state laser applications [Invited] , 2011 .

[22]  B M Luther,et al.  Demonstration of a compact 100 Hz, 0.1 J, diode-pumped picosecond laser. , 2011, Optics letters.

[23]  G. Andriukaitis,et al.  High-energy pulse stacking via regenerative pulse-burst amplification. , 2017, Optics letters.

[24]  M. Murnane,et al.  Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers , 2012, Science.

[25]  Junji Kawanaka,et al.  30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier. , 2003, Optics letters.

[26]  Tso Yee Fan,et al.  Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system. , 2012, Optics letters.

[27]  J. J. Rocca,et al.  Development of High Energy Diode-Pumped Thick-Disk Yb:YAG Chirped-Pulse-Amplification Lasers , 2012, IEEE Journal of Quantum Electronics.

[28]  G. A. Slack,et al.  Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions , 1971 .

[29]  Zbyněk Hubka,et al.  Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm. , 2016, Optics express.

[30]  Jorge J. Rocca,et al.  High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths , 2014 .

[31]  Eric M. Gullikson,et al.  Study of Gd/Tb LPP emission near λ = 6.7nm for beyond EUV lithography , 2016, SPIE Advanced Lithography.

[32]  Jorge J. Rocca,et al.  Hour-long continuous operation of a tabletop soft x-ray laser at 50-100 Hz repetition rate. , 2013, Optics express.

[33]  Cory Baumgarten,et al.  1  J, 0.5  kHz repetition rate picosecond laser. , 2016, Optics letters.

[34]  J. Rocca,et al.  Demonstration of an all-diode-pumped soft x-ray laser. , 2009, Optics letters.

[35]  H. Hoffmann,et al.  400W Yb:YAG Innoslab fs-Amplifier. , 2009, Optics express.

[36]  Fuxi Gan,et al.  Dependence of the Yb 3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet , 2003 .

[37]  K. Nakamura,et al.  Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. , 2014, Physical review letters.

[38]  Jens Limpert,et al.  12  mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition. , 2016, Optics letters.

[39]  Tino Eidam,et al.  High-harmonic generation at 250 MHz with photon energies exceeding 100 eV , 2016 .

[40]  Zach DeVito,et al.  Opt , 2017 .

[41]  Ferenc Krausz,et al.  High-power, 1-ps, all-Yb:YAG thin-disk regenerative amplifier. , 2016, Optics letters.