Collision detection for deforming necklaces
暂无分享,去创建一个
Leonidas J. Guibas | Li Zhang | An Thanh Nguyen | Daniel Russel | L. Guibas | A. Nguyen | Daniel Russel | Li Zhang | Pankaj Agarwal | L. Guibas
[1] Nimrod Megiddo,et al. Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[2] Nimrod Megiddo,et al. Linear-Time Algorithms for Linear Programming in R^3 and Related Problems , 1982, FOCS.
[3] N. Megiddo. Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.
[4] Richard S. Varga,et al. Proof of Theorem 5 , 1983 .
[5] J. Schwartz,et al. Efficient Detection of Intersections among Spheres , 1983 .
[6] J. Ponder,et al. An efficient newton‐like method for molecular mechanics energy minimization of large molecules , 1987 .
[7] Günter Rote,et al. Testing the Necklace Condition for Shortest Tours and Optimal Factors in the Plane , 1987, ICALP.
[8] Hanan Samet,et al. The Design and Analysis of Spatial Data Structures , 1989 .
[9] Emo Welzl,et al. Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.
[10] Jarek Rossignac,et al. Solid modeling , 1994, IEEE Computer Graphics and Applications.
[11] Sean Quinlan,et al. Efficient distance computation between non-convex objects , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.
[12] Dinesh Manocha,et al. Incremental Algorithms for Collision Detection Between General Solid Models , 1994 .
[13] S. Rao Kosaraju,et al. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.
[14] Dinesh Manocha,et al. Incremental algorithms for collision detection between solid models , 1995, Symposium on Solid Modeling and Applications.
[15] Elmar Schömer,et al. Efficient collision detection for moving polyhedra , 1995, SCG '95.
[16] Philip M. Hubbard,et al. Collision Detection for Interactive Graphics Applications , 1995, IEEE Trans. Vis. Comput. Graph..
[17] Dinesh Manocha,et al. OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.
[18] Geert-Jan Giezeman,et al. The CGAL Kernel: A Basis for Geometric Computation , 1996, WACG.
[19] Leonidas J. Guibas,et al. BOXTREE: A Hierarchical Representation for Surfaces in 3D , 1996, Comput. Graph. Forum.
[20] Leonidas J. Guibas,et al. Data structures for mobile data , 1997, SODA '97.
[21] Mark de Berg,et al. Realistic input models for geometric algorithms , 1997, SCG '97.
[22] Nathan Ida,et al. Introduction to the Finite Element Method , 1997 .
[23] Leonidas J. Guibas,et al. Kinetic data structures: a state of the art report , 1998 .
[24] Leonidas J. Guibas,et al. Euclidean proximity and power diagrams , 1998, CCCG.
[25] Leonidas J. Guibas,et al. Voronoi Diagrams of Moving Points , 1998, Int. J. Comput. Geom. Appl..
[26] Joseph S. B. Mitchell,et al. Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..
[27] Ming C. Lin,et al. Collision Detection between Geometric Models: A Survey , 1998 .
[28] Leonidas J. Guibas,et al. Separation-sensitive collision detection for convex objects , 1998, SODA '99.
[29] Subhash Suri,et al. Analysis of a bounding box heuristic for object intersection , 1999, SODA '99.
[30] Bernd Gärtner,et al. Fast and Robust Smallest Enclosing Balls , 1999, ESA.
[31] Leonidas J. Guibas,et al. Kinetic collision detection between two simple polygons , 2004, SODA '99.
[32] S JensenChristian,et al. Indexing the positions of continuously moving objects , 2000 .
[33] K. Bathe,et al. The method of finite spheres , 2000 .
[34] Micha Sharir,et al. Arrangements and Their Applications , 2000, Handbook of Computational Geometry.
[35] Christian S. Jensen,et al. Indexing the positions of continuously moving objects , 2000, SIGMOD '00.
[36] Bettina Speckmann,et al. Kinetic collision detection for simple polygons , 2000, SCG '00.
[37] Christian S. Jensen,et al. Indexing the Positions of Continuously Moving Objects , 2000, SIGMOD Conference.
[38] Leonidas J. Guibas,et al. Kinetic collision detection: algorithms and experiments , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).
[39] Ho-Lun Cheng,et al. Shape space from deformation , 2001, Comput. Geom..
[40] Jeff Erickson,et al. Dense point sets have sparse Delaunay triangulations , 2001, ArXiv.
[41] Herbert Edelsbrunner,et al. Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.
[42] Jeff Erickson,et al. Nice Point Sets Can Have Nasty Delaunay Triangulations , 2001, SCG '01.
[43] Jeff Erickson,et al. Dense Point Sets Have Sparse Delaunay Triangulations or “... But Not Too Nasty” , 2001, SODA '02.
[44] Jean-Claude Latombe,et al. Efficient maintenance and self-collision testing for Kinematic Chains , 2002, SCG '02.
[45] Leonidas J. Guibas,et al. Deformable Free-Space Tilings for Kinetic Collision Detection† , 2002, Int. J. Robotics Res..
[46] Pankaj K. Agarwal,et al. STAR-Tree: An Efficient Self-Adjusting Index for Moving Objects , 2002, ALENEX.
[47] Bettina Speckmann,et al. Kinetic maintenance of context-sensitive hierarchical representations for disjoint simple polygons , 2002, SCG '02.
[48] Jeff Erickson,et al. Local polyhedra and geometric graphs , 2003, SCG '03.
[49] Bernd Gärtner,et al. The smallest enclosing ball of balls: combinatorial structure and algorithms , 2003, SCG '03.
[50] Zukang Feng,et al. The Protein Data Bank and structural genomics , 2003, Nucleic Acids Res..