A COMPUTERIZED SYSTEM FOR GRAPH THEORY, ILLUSTRATED BY PARTIAL PROOFS FOR GRAPH-COLORING PROBLEMS *
暂无分享,去创建一个
[1] Nedyalko Dimov Nenov. On the small graphs with chromatic number 5 without 4-cliques , 1998, Discret. Math..
[2] Michael O. Albertson,et al. On Six‐Chromatic Toroidal Graphs , 1980 .
[3] Matej Stehlík. Critical graphs with connected complements , 2003, J. Comb. Theory, Ser. B.
[4] Gordon F. Royle,et al. Small graphs with chromatic number 5: A computer search , 1995, J. Graph Theory.
[5] Ronald D. Dutton,et al. INGRID: A Graph Invariant Manipulator , 1989, J. Symb. Comput..
[6] Dieter Gernert. Experimental Results on the Efficiency of Rule-Based Systems , 1993 .
[7] Michael Doob,et al. Generalized line graphs , 1981, J. Graph Theory.
[8] Carsten Thomassen. Five-Coloring Graphs on the Torus , 1994, J. Comb. Theory, Ser. B.
[9] Ronald J. Gould,et al. Graph theory , 1988 .
[10] R. L. Brooks. On Colouring the Nodes of a Network , 1941 .
[11] Ronald D. Dutton,et al. A compilation of relations between graph invariants , 1985, Networks.
[12] Ronald D. Dutton,et al. A compilation of relations between graph invariants - supplement I , 1991, Networks.
[13] Paul Erdös,et al. Chromatic Number Versus Cochromatic Number in Graphs with Bounded Clique Number , 1990, Eur. J. Comb..
[14] Bruce A. Reed,et al. An upper bound for the chromatic number of line graphs , 2007, Eur. J. Comb..
[15] Alexandr V. Kostochka,et al. On an upper bound of a graph's chromatic number, depending on the graph's degree and density , 1977, J. Comb. Theory B.
[16] Ladislav Stacho. New upper bounds for the chromatic number of a graph , 2001 .
[17] Landon Rabern. On Graph Associations , 2006, SIAM J. Discret. Math..
[18] Alexandr V. Kostochka,et al. Excess in colour-critical graphs , 1999 .
[19] Paul A. Catlin,et al. Another bound on the chromatic number of a graph , 1978, Discret. Math..
[20] Hudson V. Kronk,et al. The chromatic number of triangle-free graphs , 1972 .
[21] Bruce A. Reed,et al. A Strengthening of Brooks' Theorem , 1999, J. Comb. Theory B.
[22] Landon Rabern. The Borodin-Kostochka Conjecture for Graphs Containing a Doubly Critical Edge , 2007, Electron. J. Comb..