Geometrical theory of whispering-gallery modes

Using a quasi-classical approach, rather precise analytical approximations for the eigenfrequencies of whispering-gallery modes (WGMs) in convex axisymmetric bodies may be found. We use the eikonal method to analyze the limits of precision of quasi-classical approximation using, as a practical example, a spheroidal dielectric cavity. The series obtained for the calculation of eigenfrequencies is compared with the known series for a dielectric sphere, and with numerical calculations. We show how geometrical interpretation allows expansion of the method on arbitrarily-shaped axisymmetric bodies.

[1]  Le-Wei Li,et al.  Spheroidal Wave Functions in Electromagnetic Theory , 2001 .

[2]  L. G. Guimarães,et al.  Uniform asymptotic formulae for the spheroidal radial function , 2002 .

[3]  Lute Maleki,et al.  Nonlinear optics and crystalline whispering gallery mode cavities. , 2004, Physical review letters.

[4]  X S Yao,et al.  Microtorus: a high-finesse microcavity with whispering-gallery modes. , 2001, Optics letters.

[5]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[6]  Lev Albertovich Weinstein,et al.  Open Resonators and Open Waveguides , 1970 .

[7]  D. Kajfex,et al.  Dielectric Resonators , 1986 .

[8]  K. Vahala Optical microcavities , 2003, Nature.

[9]  V. G. Farafonov,et al.  Optical properties of spheroidal particles , 1993 .

[10]  Joseph B. Keller,et al.  Asymptotic solution of eigenvalue problems , 1960 .

[11]  Lute Maleki,et al.  Whispering gallery resonators for studying orbital angular momentum of a photon. , 2005, Physical review letters.

[12]  P. Guillon,et al.  Dielectric resonators , 1988, Proceedings of the 42nd Annual Frequency Control Symposium, 1988..

[13]  Vladimir I. Arnold,et al.  Modes and quasimodes , 1972 .

[14]  L. A. Vaĭnshteĭn,et al.  Open resonators and open waveguides , 1969 .

[15]  V. A. Borovikov,et al.  Geometrical Theory of Diffraction , 1994 .

[16]  M. Sumetsky,et al.  Whispering-gallery-bottle microcavities: the three-dimensional etalon. , 2004, Optics letters.

[17]  S. Asano,et al.  Light scattering by a spheroidal particle. , 1975, Applied optics.

[18]  L. G. Guimarães,et al.  Semiclassical theory to optical resonant modes of a transparent dielectric spheroidal cavity. , 2002, Applied optics.

[19]  A note on the TE/TM decomposition of electromagnetic fields in three dimensional homogeneous space , 2004, IEEE Transactions on Antennas and Propagation.

[20]  V. M. Babich,et al.  Short-wavelength diffraction theory : asymptotic methods , 1991 .

[21]  S. Schiller Asymptotic expansion of morphological resonance frequencies in Mie scattering. , 1993, Applied optics.

[22]  Vladimir S. Ilchenko,et al.  Quality-factor and nonlinear properties of optical Whispering-Gallery modes , 1989 .

[23]  On the solution of boundary value problems using spheroidal eigenvectors , 2001 .

[24]  Vasili M. Babič,et al.  Short-Wavelength Diffraction Theory , 1991 .

[25]  Vladimir S. Ilchenko,et al.  High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers , 1994 .