Global salient information maximization for saliency detection

In this paper, a new method for saliency detection is proposed. Based on the defined features of the salient object, we solve the problem of saliency detection from three aspects. Firstly, from the view of global information, we partition the image into two clusters, namely, salient component and background component by employing Principal Component Analysis (PCA) and k-means clustering. Secondly, the maximal salient information is applied to find the position of saliency and eliminate the noise. Thirdly, we enhance the saliency for the salient regions while weaken the background regions. Finally, the saliency map is obtained based on these aspects. Experimental results show that the proposed method achieves better results than the state of the art methods. And this method can be applied for graph based salient object segmentation.

[1]  Lihi Zelnik-Manor,et al.  Context-Aware Saliency Detection , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  King Ngi Ngan,et al.  Unsupervised extraction of visual attention objects in color images , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[3]  L. D. Costa Visual Saliency and Attention as Random Walks on Complex Networks , 2006, physics/0603025.

[4]  T. Poggio,et al.  Predicting the visual world: silence is golden , 1999, Nature Neuroscience.

[5]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[6]  Michael Lindenbaum,et al.  On the Distribution of Saliency , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Wen Gao,et al.  Measuring visual saliency by Site Entropy Rate , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Chris H. Q. Ding,et al.  Spectral Relaxation for K-means Clustering , 2001, NIPS.

[9]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[10]  Patrick Le Callet,et al.  A coherent computational approach to model bottom-up visual attention , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[12]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[14]  Thomas Deselaers,et al.  What is an object? , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[16]  Benjamin B. Bederson,et al.  Automatic thumbnail cropping and its effectiveness , 2003, UIST '03.

[17]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[19]  Ariel Shamir,et al.  Seam Carving for Content-Aware Image Resizing , 2007, ACM Trans. Graph..

[20]  Philip H. S. Torr,et al.  What, Where and How Many? Combining Object Detectors and CRFs , 2010, ECCV.

[21]  Benoit M. Macq,et al.  Perceptual Image Representation , 2007, EURASIP J. Image Video Process..

[22]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[23]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[24]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[25]  Xavier Cufí,et al.  Yet Another Survey on Image Segmentation: Region and Boundary Information Integration , 2002, ECCV.

[26]  Turgay Çelik,et al.  Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and $k$-Means Clustering , 2009, IEEE Geoscience and Remote Sensing Letters.

[27]  John K. Tsotsos,et al.  Saliency Based on Information Maximization , 2005, NIPS.

[28]  George K. I. Mann,et al.  An Object-Based Visual Attention Model for Robotic Applications , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[29]  King Ngi Ngan,et al.  Saliency model-based face segmentation and tracking in head-and-shoulder video sequences , 2008, J. Vis. Commun. Image Represent..

[30]  Noah A. Smith,et al.  Proceedings of NIPS , 2010, NIPS 2010.

[31]  Chris H. Q. Ding,et al.  K-means clustering via principal component analysis , 2004, ICML.

[32]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[33]  Naila Murray,et al.  Saliency estimation using a non-parametric low-level vision model , 2011, CVPR 2011.

[34]  Nuno Vasconcelos,et al.  Bottom-up saliency is a discriminant process , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[35]  Byoung Chul Ko,et al.  Object-of-interest image segmentation based on human attention and semantic region clustering. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Liqing Zhang,et al.  Dynamic visual attention: searching for coding length increments , 2008, NIPS.

[37]  Mubarak Shah,et al.  Visual attention detection in video sequences using spatiotemporal cues , 2006, MM '06.

[38]  Pietro Perona,et al.  Is bottom-up attention useful for object recognition? , 2004, CVPR 2004.

[39]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[40]  Sabine Süsstrunk,et al.  Salient Region Detection and Segmentation , 2008, ICVS.

[41]  Nuno Vasconcelos,et al.  The discriminant center-surround hypothesis for bottom-up saliency , 2007, NIPS.

[42]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[43]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.