On smooth traveling waves of an integrable two-component Camassa-Holm shallow water system

We give a simple proof of existence for the smooth traveling waves with a single crest profile of maximum amplitude of a recently derived integrable two-component shallow water system.

[1]  R. S. Johnson,et al.  Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis , 2008 .

[2]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[3]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[4]  W. Strauss,et al.  Stability of peakons , 2000 .

[5]  A. Bressan,et al.  Global Conservative Solutions of the Camassa–Holm Equation , 2007 .

[6]  Joachim Escher,et al.  Particle trajectories in solitary water waves , 2007 .

[7]  A. Constantin,et al.  The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations , 2007, 0709.0905.

[8]  A. Constantin,et al.  Geodesic flow on the diffeomorphism group of the circle , 2003 .

[9]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[10]  V. Gerdjikov,et al.  Inverse scattering transform for the Camassa–Holm equation , 2006, Inverse Problems.

[11]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[12]  A. Wintner The Infinities in the Non-Local Existence Problem of Ordinary Differential Equations , 1946 .

[13]  R. S. Johnson,et al.  The Camassa–Holm equation for water waves moving over a shear flow , 2003 .

[14]  Darryl D. Holm,et al.  Geodesic flows on semidirect-product Lie groups: geometry of singular measure-valued solutions , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Joachim Escher,et al.  Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation , 2007 .

[16]  Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Rossen I. Ivanov,et al.  On an integrable two-component Camassa–Holm shallow water system , 2008, 0806.0868.

[18]  Adrian Constantin,et al.  The trajectories of particles in Stokes waves , 2006 .

[19]  Gerard Misio łek A shallow water equation as a geodesic flow on the Bott-Virasoro group , 1998 .

[20]  Darryl D. Holm,et al.  Singular solutions of a modified two-component Camassa-Holm equation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Adrian Constantin,et al.  A shallow water equation on the circle , 1999 .

[22]  KEIVAN MOHAJER,et al.  A NOTE ON TRAVELING WAVE SOLUTIONS TO THE TWO COMPONENT CAMASSA–HOLM EQUATION , 2008, Journal of Nonlinear Mathematical Physics.

[23]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[24]  A. Constantin Existence of permanent and breaking waves for a shallow water equation: a geometric approach , 2000 .