Toward minimal bacterial cells: evolution vs. design

Abstract Recent technical and conceptual advances in the biological sciences opened the possibility of the construction of newly designed cells. In this paper we review the state of the art of cell engineering in the context of genome research, paying particular attention to what we can learn on naturally reduced genomes from either symbiotic or free living bacteria. Different minimal hypothetically viable cells can be defined on the basis of several computational and experimental approaches. Projects aiming at simplifying living cells converge with efforts to make synthetic genomes for minimal cells. The panorama of this particular view of synthetic biology lead us to consider the use of defined minimal cells to be applied in biomedical, bioremediation, or bioenergy application by taking advantage of existing naturally minimized cells.

[1]  W. Reznikoff,et al.  Transposon-based strategies for the identification of essential bacterial genes. , 2008, Methods in molecular biology.

[2]  Masayuki Inui,et al.  Large-Scale Engineering of the Corynebacterium glutamicum Genome , 2005, Applied and Environmental Microbiology.

[3]  George M Church,et al.  Towards synthesis of a minimal cell , 2006, Molecular systems biology.

[4]  C. Pál,et al.  Systematic genome reductions: theoretical and experimental approaches. , 2007, Chemical reviews.

[5]  Masayuki Inui,et al.  New Multiple-Deletion Method for the Corynebacterium glutamicum Genome, Using a Mutant lox Sequence , 2005, Applied and Environmental Microbiology.

[6]  Sandip Paul,et al.  Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation , 2006, BMC Genomics.

[7]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[8]  Hajime Ishikawa,et al.  The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella , 2006, Science.

[9]  George M Church,et al.  Synthetic biology projects in vitro. , 2006, Genome research.

[10]  Jun Hyoung Lee,et al.  Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system , 2002, Nature Biotechnology.

[11]  A. Moya,et al.  Learning how to live together: genomic insights into prokaryote–animal symbioses , 2008, Nature Reviews Genetics.

[12]  E. Koonin,et al.  A minimal gene set for cellular life derived by comparison of complete bacterial genomes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  William A. Siebold,et al.  SAR11 clade dominates ocean surface bacterioplankton communities , 2002, Nature.

[14]  S. Benner,et al.  Total synthesis and cloning of a gene coding for the ribonuclease S protein. , 1984, Science.

[15]  Kunio Yamane,et al.  Bacillus minimum genome factory: effective utilization of microbial genome information , 2007, Biotechnology and applied biochemistry.

[16]  Andrés Moya,et al.  Structural analyses of a hypothetical minimal metabolism , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  Matthias Heinemann,et al.  Synthetic biology - putting engineering into biology , 2006, Bioinform..

[18]  Hiroshi Mizoguchi,et al.  Escherichia coli minimum genome factory , 2007, Biotechnology and applied biochemistry.

[19]  Timothy B. Stockwell,et al.  Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome , 2008, Science.

[20]  H. Morowitz Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis , 1992 .

[21]  Michael Y. Galperin,et al.  The dawn of synthetic genomics , 2008, Environmental microbiology.

[22]  M. Inui,et al.  Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum , 2005, Applied Microbiology and Biotechnology.

[23]  Tuval Ben Yehezkel,et al.  Recursive construction of perfect DNA molecules from imperfect oligonucleotides , 2008, Molecular systems biology.

[24]  An improved method for deleting large regions of Escherichia coli K-12 chromosome using a combination of Cre/loxP and lambda Red. , 2004, FEMS microbiology letters.

[25]  Frédéric Partensky,et al.  Accelerated evolution associated with genome reduction in a free-living prokaryote , 2005, Genome Biology.

[26]  D. Bartel,et al.  Synthesizing life : Paths to unforeseeable science & technology , 2001 .

[27]  J. Szostak,et al.  Template-directed synthesis of a genetic polymer in a model protocell , 2008, Nature.

[28]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[29]  F. Blattner,et al.  Emergent Properties of Reduced-Genome Escherichia coli , 2006, Science.

[30]  Arjun Bhutkar,et al.  Synthetic biology: navigating the challenges ahead. , 2005, The journal of biolaw & business.

[31]  Nicola Zamboni,et al.  Genome engineering reveals large dispensable regions in Bacillus subtilis. , 2003, Molecular biology and evolution.

[32]  Maureen A. O’Malley,et al.  Knowledge-making distinctions in synthetic biology. , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[33]  A. Sancar,et al.  Simple method for identification of plasmid-coded proteins , 1979, Journal of bacteriology.

[34]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[35]  Jeffrey C Way,et al.  Designing biological systems. , 2007, Genes & development.

[36]  J. Heinemann,et al.  Retrotransfer of IncP piasmid R751 from Escherichia coli maxicells: evidence for the genetic sufficiency of self‐transferable plasmids for bacterial conjugation , 1993, Molecular microbiology.

[37]  P. Baumann Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. , 2005, Annual review of microbiology.

[38]  Hiroshi Mizoguchi,et al.  Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome , 2004, Molecular microbiology.

[39]  P. Forterre,et al.  Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? , 2005, Genome Biology.

[40]  Peter A Carr,et al.  Protein-mediated error correction for de novo DNA synthesis. , 2004, Nucleic acids research.

[41]  Michael Y. Galperin,et al.  Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Paul,et al.  Chemical Synthesis of Poliovirus cDNA: Generation of Infectious Virus in the Absence of Natural Template , 2002, Science.

[43]  Guy Plunkett,et al.  Engineering a reduced Escherichia coli genome. , 2002, Genome research.

[44]  G. Church,et al.  Accurate multiplex gene synthesis from programmable DNA microchips , 2004, Nature.

[45]  D. Bartel,et al.  Synthesizing life , 2001, Nature.

[46]  J Craig Venter,et al.  Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  W. Stemmer,et al.  Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. , 1995, Gene.

[48]  Andrew C. Tolonen,et al.  Genetic Manipulation of Prochlorococcus Strain MIT9313: Green Fluorescent Protein Expression from an RSF1010 Plasmid and Tn5 Transposition , 2006, Applied and Environmental Microbiology.

[49]  Andrés Moya,et al.  The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii , 2007, BMC Evolutionary Biology.

[50]  Luis Serrano,et al.  Synthetic biology: promises and challenges , 2007, Molecular systems biology.

[51]  A. Moya,et al.  The Striking Case of Tryptophan Provision in the Cedar Aphid Cinara cedri , 2008, Journal of bacteriology.

[52]  Ralph S. Baric,et al.  Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J A Eisen,et al.  The Calyptogena magnifica Chemoautotrophic Symbiont Genome , 2007, Science.

[54]  Harald Huber,et al.  A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont , 2002, Nature.

[55]  W. Doolittle,et al.  Biodiversity: Something new under the sea , 2002, Nature.

[56]  C. A. Hutchinson,et al.  Genome transplantation in bacteria: changing one species to another. , 2007, Nature Reviews Microbiology.

[57]  J. W. Goethe Zur Naturwissenschaft überhaupt, besonders zur Morphologie , 1817 .

[58]  D. Vaulot,et al.  Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance , 1999, Microbiology and Molecular Biology Reviews.

[59]  Sarah J Kodumal,et al.  Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[60]  W. Hess Genome analysis of marine photosynthetic microbes and their global role. , 2004, Current opinion in biotechnology.

[61]  J. W. Campbell,et al.  Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655 , 2003, Journal of bacteriology.

[62]  Dieter Söll,et al.  The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  E. Raineri,et al.  Evolvability and hierarchy in rewired bacterial gene networks , 2008, Nature.

[64]  Jacob Moses,et al.  Do We Need "Synthetic Bioethics"? , 2008, Science.

[65]  A. Moya,et al.  Coexistence of Wolbachia with Buchnera aphidicola and a Secondary Symbiont in the Aphid Cinara cedri , 2004, Journal of bacteriology.

[66]  M. Inui,et al.  Multiple large segment deletion method for Corynebacterium glutamicum , 2005, Applied Microbiology and Biotechnology.

[67]  Phat L Tran,et al.  Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters , 2006, PLoS biology.

[68]  N. Moran,et al.  Parallel genomic evolution and metabolic interdependence in an ancient symbiosis , 2007, Proceedings of the National Academy of Sciences.

[69]  S. Kanaya,et al.  Enhanced Recombinant Protein Productivity by Genome Reduction in Bacillus subtilis , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[70]  Shigeru Shimamura,et al.  Reduced Genome of the Thioautotrophic Intracellular Symbiont in a Deep-Sea Clam, Calyptogena okutanii , 2007, Current Biology.

[71]  Sallie W. Chisholm,et al.  A novel free-living prochlorophyte abundant in the oceanic euphotic zone , 1988, Nature.

[72]  D. Deamer,et al.  A giant step towards artificial life? , 2005, Trends in biotechnology.

[73]  Juli Peretó,et al.  The Renaissance of Synthetic Biology , 2007 .

[74]  A. Moya,et al.  Determination of the Core of a Minimal Bacterial Gene Set , 2004, Microbiology and Molecular Biology Reviews.

[75]  Andrés Moya,et al.  A Small Microbial Genome: The End of a Long Symbiotic Relationship? , 2006, Science.

[76]  S. Oliver,et al.  Chance and necessity in the evolution of minimal metabolic networks , 2006, Nature.

[77]  A. Moya,et al.  Evolution of the Secondary Symbiont “Candidatus Serratia symbiotica” in Aphid Species of the Subfamily Lachninae , 2008, Applied and Environmental Microbiology.

[78]  E. Delver,et al.  IncN plasmid pKM101 and IncI1 plasmid ColIb-P9 encode homologous antirestriction proteins in their leading regions , 1992, Journal of bacteriology.

[79]  Alessandra Carbone,et al.  Computational Prediction of Genomic Functional Cores Specific to Different Microbes , 2006, Journal of Molecular Evolution.

[80]  R. Contreras,et al.  Total synthesis of a tyrosine suppressor transfer RNA gene. XVI. Enzymatic joinings to form the total 207-base pair-long DNA. , 1979, The Journal of biological chemistry.

[81]  C. Lane Bacterial Endosymbionts: Genome Reduction in a Hot Spot , 2007, Current Biology.

[82]  George Church,et al.  Let us go forth and safely multiply , 2005, Nature.

[83]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[84]  Pier Luigi Luisi,et al.  Chemical Aspects of Synthetic Biology , 2007, Chemistry & biodiversity.

[85]  Manesh Shah,et al.  Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation , 2003, Nature.

[86]  W. Margolin,et al.  FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization , 1999, Molecular microbiology.

[87]  C. Hutchison,et al.  Essential genes of a minimal bacterium. , 2006, Proceedings of the National Academy of Sciences of the United States of America.