Location and dynamics of alamethicin in unilamellar vesicles and thylakoids as model systems. A spin label study.

[1]  B. Wille Thylakoid volume, proton translocation and buffering capacity as measured with spin-label techniques , 1988 .

[2]  C. Altenbach,et al.  The aggregation state of spin‐labeled melittin in solution and bound to phospholipid membranes: Evidence that membrane‐bound melittin is monomeric , 1988, Proteins.

[3]  G. Schwarz,et al.  Incorporation kinetics in a membrane, studied with the pore-forming peptide alamethicin. , 1987, Biophysical journal.

[4]  H. Vogel Comparison of the conformation and orientation of alamethicin and melittin in lipid membranes. , 1987, Biochemistry.

[5]  G. Jung,et al.  Depth-dependent fluorescent quenching of a tryptophan residue located at defined positions on a rigid 21-peptide helix in liposomes. , 1987, Biochimica et biophysica acta.

[6]  W. Junge,et al.  Transient and intramembrane trapping of pumped protons in thylakoids , 1986 .

[7]  G. Hauska,et al.  [26] Reconstitution of H+ translocation and photophosphorylation with photosystem I reaction centers, PMS, and CF1CF0 , 1986 .

[8]  M. Schönfeld,et al.  Kinetics of dark proton efflux in chloroplasts , 1985 .

[9]  G. Jung,et al.  13C NMR Spectroscopic Control of the Synthesis of Alamethicin F 30 and its Segments , 1985 .

[10]  G. Jung,et al.  The C‐Terminal Heptapeptides of Suzukacillin A and Alamethicin F30 — Sequence, Conformation, and Synthesis , 1985 .

[11]  H. Brückner,et al.  Trichotoxin A40. Purification by counter-current distribution and sequencing of isolated fragments. , 1985, Biochimica et biophysica acta.

[12]  M. Schönfeld,et al.  The permeability of the thylakoid membrane for protons , 1984 .

[13]  T. M. Balasubramanian,et al.  Alamethicin. A rich model for channel behavior. , 1984, Biophysical journal.

[14]  W. Junge,et al.  The effect of low concentrations of uncouplers on the detectability of proton deposition in thylakoids. Evidence for subcompartmentation and preexisting pH differences in the dark , 1983 .

[15]  G. Schwarz,et al.  Solvent-dependent structural features of the membrane active peptide trichotoxin A40 as reflected in its dielectric dispersion. , 1983, Biochimica et biophysica acta.

[16]  S. Briggs,et al.  Localization of spin labels in oat leaf protoplasts. , 1982, Plant physiology.

[17]  H. Witt,et al.  Salt dependence of the electrical potential at the photosynthetic membrane in steady-state light and its structural consequence , 1982 .

[18]  G. Schwarz,et al.  Structural and dipolar properties of the voltage-dependent pore former alamethicin in octanol/dioxane. , 1982, Biophysical journal.

[19]  T. M. Balasubramanian,et al.  SYNTHESIS AND CHARACTERIZATION OF THE MAJOR COMPONENT OF ALAMETHICIN , 1982 .

[20]  L. Blumenfeld,et al.  Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH , 1981 .

[21]  J. Puskin,et al.  A spin label method for measuring internal volumes in liposomes or cells, applied to Ca-dependent fusion of negatively charged vesicles. , 1981, Biochimica et biophysica acta.

[22]  G. Hind,et al.  Correlation between photosynthesis and the transthylakoid proton gradient. , 1981, Biochimica et biophysica acta.

[23]  F. Haraux,et al.  Measurement of chloroplast internal protons with 9-aminoacridine. Probe binding, dark proton gradient, and salt effects. , 1980, Biochimica et biophysica acta.

[24]  H. Brückner,et al.  Identification of N-acetyl-α-aminoisobutyric acid after selective trifluoroacetolysis of alamethicin and related peptide antibiotics , 1980 .

[25]  B. Sakmann,et al.  Alamethicin-induced single channel conductance fluctuations in biological membranes , 1979, Nature.

[26]  H. Schindler Autocatalytic transport of the peptide antibiotics suzukacillin and alamethicin across lipid membranes , 1979, FEBS letters.

[27]  W. Junge,et al.  The buffering capacity of the internal phase of thylakoids and the magnitude of the pH changes inside under flashing light. , 1979, Biochimica et biophysica acta.

[28]  S. Eaton,et al.  Metal-nitroxyl interactions. 12. Nitroxyl spin probes in the presence of tris(oxalato)chromate(III) , 1979 .

[29]  R. Benz,et al.  Charge-pulse relaxation studies with lipid bilayer membranes modified by alamethicin. , 1978, Biochimica et biophysica acta.

[30]  J. H. Shaper,et al.  Channels across black lipid membranes. , 1977, Annals of the New York Academy of Sciences.

[31]  G. Jung,et al.  Die hämolytischen Eigenschaften der membranmodifizierenden Peptidantibiotika Alamethicin, Suzukacillin und Trichotoxin , 1977 .

[32]  C. Giersch,et al.  CO2 reduction by intact chloroplasts under a diminished proton gradient. , 1977, Biochimica et biophysica acta.

[33]  W. Junge Membrane Potentials in Photosynthesis , 1977 .

[34]  F. Garlaschi,et al.  On the estimation of proton gradient and osmotic volume in chloroplast membranes , 1977, Journal of bioenergetics and biomembranes.

[35]  A. Keith,et al.  Spin-label studies on the aqueous regions of phospholipid multilayers. , 1977, Biochemistry.

[36]  Y. Kagawa,et al.  Reconstitution of vesicles capable of energy transformation from phospholipids and adenosine triphosphatase of a thermophilic bacterium. , 1977, Journal of biochemistry.

[37]  H. Witt,et al.  Estimation of the light‐induced electrical potential at the functional membrane of photosynthesis using a voltage‐dependent ionophore , 1976 .

[38]  R. J. Williams,et al.  Chemical nature and sequence of alamethicin. , 1976, The Biochemical journal.

[39]  L. Stryer,et al.  Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A. , 1975, Journal of molecular biology.

[40]  G. Jung,et al.  Conformational changes of alamethicin induced by solvent and temperature. A 13C-NMR and circular-dichroism study. , 1975, European journal of biochemistry.

[41]  K. Sauer,et al.  The rapid component of electron paramagnetic resonance signal II: a candidate for the physiological donor to photosystem II in spinach chloroplasts. , 1975, Biochimica et biophysica acta.

[42]  J. Bolton,et al.  FLASH PHOTOLYSIS‐ELECTRON SPIN RESONANCE STUDIES OF THE DYNAMICS OF PHOTOSYSTEM I IN GREEN‐PLANT PHOTOSYNTHESIS‐I. EFFECTS OF ACCEPTORS AND DONORS IN SUBCHLOROPLAST PARTICLES * , 1974 .

[43]  V. Livshits,et al.  A method of studying the anisotropic rotation of organic nitroxyl radicals , 1974 .

[44]  G. Rosen Use of sodium cyanoborohydride in the preparation of biologically active nitroxides. , 1974, Journal of medicinal chemistry.

[45]  G Baumann,et al.  A molecular model of membrane excitability. , 1974, Journal of supramolecular structure.

[46]  W. G. Miller,et al.  Nitroxide spin-labeled poly-.gamma.-benzyl-.alpha.,L-glutamate , 1973 .

[47]  A. Bangham,et al.  Single bilayer liposomes. , 1971, Biochimica et biophysica acta.

[48]  A. Jagendorf,et al.  Light-induced change in the buffer capacity of spinach chloroplast suspensions. , 1969, Biochemical and biophysical research communications.

[49]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[50]  D. O. Rudin,et al.  Action Potentials induced in Biomolecular Lipid Membranes , 1968, Nature.

[51]  F. Reusser Biosynthesis of antibiotic U-22,324, a cyclic polypeptide. , 1967, The Journal of biological chemistry.

[52]  D. Kivelson Theory of ESR Linewidths of Free Radicals , 1960 .

[53]  G. M. Coppinger A stable phenoxy radical inert to oxygen , 1957 .

[54]  D. Arnon COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. , 1949, Plant physiology.