On the second fundamental theorem of invariant theory for the orthosymplectic supergroup
暂无分享,去创建一个
[1] P. Deligné,et al. Notes on supersymmetry (following Joseph Bernstein) , 1999 .
[2] C. Stroppel,et al. Schur–Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra , 2014, 1412.7853.
[3] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[4] Richard Brauer,et al. On Algebras Which are Connected with the Semisimple Continuous Groups , 1937 .
[5] G. James,et al. The Representation Theory of the Symmetric Group , 2009 .
[6] A. Salam,et al. Super-gauge transformations , 1974 .
[7] A. Sergeev. An analog of the classical invariant theory for Lie superalgebras. I , 1998, math/9904079.
[8] Specht filtrations and tensor spaces for the Brauer algebra , 2006, math/0604577.
[9] Peter D. Jarvis,et al. Diagram and superfield techniques in the classical superalgebras , 1981 .
[10] THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP , 2016, Nagoya Mathematical Journal.
[11] P. Martin,et al. The blocks of the Brauer algebra in characteristic zero , 2006, math/0601387.
[12] James Green,et al. Polynomial representations of GLn , 1980 .
[13] G. Lehrer,et al. Invariants of the orthosymplectic Lie superalgebra and super Pfaffians , 2015, 1507.01329.
[14] V. Varadarajan. Supersymmetry for Mathematicians: An Introduction , 2004 .
[15] G. Lehrer,et al. THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP , 2014, Nagoya Mathematical Journal.
[16] M. Scheunert,et al. The general linear supergroup and its Hopf superalgebra of regular functions , 2002 .
[17] G. Lehrer,et al. Strongly multiplicity free modules for Lie algebras and quantum groups , 2006 .
[18] Ross Street,et al. Braided Tensor Categories , 1993 .
[19] On a Theorem of Lehrer and Zhang , 2011, 1105.5287.
[20] C. Carmeli,et al. Mathematical foundations of supersymmetry , 2007, 0710.5742.
[21] G. Lehrer,et al. A Temperley–Lieb Analogue for the BMW Algebra , 2008, 0806.0687.
[22] R. Goodman,et al. Representations and Invariants of the Classical Groups , 1998 .
[23] C. Stroppel,et al. Koszul gradings on Brauer algebras , 2015, 1504.03924.
[24] A. Balantekin,et al. Representations of supergroups , 1981 .
[25] G. Lehrer,et al. Cellular algebras , 1996 .
[26] Claudio Procesi,et al. Lie Groups: An Approach through Invariants and Representations , 2006 .
[27] Claudiu Raicu. Products of Young symmetrizers and ideals in the generic tensor algebra , 2013, 1301.7511.
[28] J. Zhou,et al. On ω-Lie superalgebras , 2017, Journal of Algebra and Its Applications.
[29] L. Corwin. Review: M. Scheunert, The theory of Lie superalgebras; an introduction , 1980 .
[30] S. Doty,et al. Schur–Weyl duality for orthogonal groups , 2007, 0712.0944.
[31] R. B. Zhang,et al. The Brauer Category and Invariant Theory , 2012, 1207.5889.
[32] Amitai Regev,et al. Hook young diagrams with applications to combinatorics and to representations of Lie superalgebras , 1987 .
[33] V. K. Patodi,et al. On the heat equation and the index theorem , 1973 .
[34] Joe Harris,et al. Representation Theory: A First Course , 1991 .
[35] G. Lehrer,et al. Cellular algebras and diagram algebras in representation theory , 2004 .
[36] G. Lehrer,et al. THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOGONAL GROUP , 2011, 1102.3221.