On the second fundamental theorem of invariant theory for the orthosymplectic supergroup

Abstract Let OSp ( V ) be the orthosymplectic supergroup on an orthosymplectic vector superspace V of superdimension ( m | 2 n ) . Lehrer and Zhang showed that there is a surjective algebra homomorphism F r r : B r ( m − 2 n ) → End OSp ( V ) ( V ⊗ r ) , where B r ( m − 2 n ) is the Brauer algebra of degree r with parameter m − 2 n . The second fundamental theorem of invariant theory in this setting seeks to describe the kernel Ker F r r of F r r as a 2-sided ideal of B r ( m − 2 n ) . In this paper, we show that Ker F r r ≠ 0 if and only if r ≥ r c : = ( m + 1 ) ( n + 1 ) , and give a basis and a dimension formula for Ker F r r . We show that Ker F r r as a 2-sided ideal of B r ( m − 2 n ) is generated by Ker F r c r c for any r ≥ r c , and we provide an explicit set of generators for Ker F r c r c . These generators coincide in the classical case with those obtained in recent papers of Lehrer and Zhang on the second fundamental theorem of invariant theory for the orthogonal and symplectic groups. As an application we obtain the necessary and sufficient conditions for the endomorphism algebra End osp ( V ) ( V ⊗ r ) over the orthosymplectic Lie superalgebra osp ( V ) to be isomorphic to B r ( m − 2 n ) .

[1]  P. Deligné,et al.  Notes on supersymmetry (following Joseph Bernstein) , 1999 .

[2]  C. Stroppel,et al.  Schur–Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra , 2014, 1412.7853.

[3]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[4]  Richard Brauer,et al.  On Algebras Which are Connected with the Semisimple Continuous Groups , 1937 .

[5]  G. James,et al.  The Representation Theory of the Symmetric Group , 2009 .

[6]  A. Salam,et al.  Super-gauge transformations , 1974 .

[7]  A. Sergeev An analog of the classical invariant theory for Lie superalgebras. I , 1998, math/9904079.

[8]  Specht filtrations and tensor spaces for the Brauer algebra , 2006, math/0604577.

[9]  Peter D. Jarvis,et al.  Diagram and superfield techniques in the classical superalgebras , 1981 .

[10]  THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP , 2016, Nagoya Mathematical Journal.

[11]  P. Martin,et al.  The blocks of the Brauer algebra in characteristic zero , 2006, math/0601387.

[12]  James Green,et al.  Polynomial representations of GLn , 1980 .

[13]  G. Lehrer,et al.  Invariants of the orthosymplectic Lie superalgebra and super Pfaffians , 2015, 1507.01329.

[14]  V. Varadarajan Supersymmetry for Mathematicians: An Introduction , 2004 .

[15]  G. Lehrer,et al.  THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP , 2014, Nagoya Mathematical Journal.

[16]  M. Scheunert,et al.  The general linear supergroup and its Hopf superalgebra of regular functions , 2002 .

[17]  G. Lehrer,et al.  Strongly multiplicity free modules for Lie algebras and quantum groups , 2006 .

[18]  Ross Street,et al.  Braided Tensor Categories , 1993 .

[19]  On a Theorem of Lehrer and Zhang , 2011, 1105.5287.

[20]  C. Carmeli,et al.  Mathematical foundations of supersymmetry , 2007, 0710.5742.

[21]  G. Lehrer,et al.  A Temperley–Lieb Analogue for the BMW Algebra , 2008, 0806.0687.

[22]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .

[23]  C. Stroppel,et al.  Koszul gradings on Brauer algebras , 2015, 1504.03924.

[24]  A. Balantekin,et al.  Representations of supergroups , 1981 .

[25]  G. Lehrer,et al.  Cellular algebras , 1996 .

[26]  Claudio Procesi,et al.  Lie Groups: An Approach through Invariants and Representations , 2006 .

[27]  Claudiu Raicu Products of Young symmetrizers and ideals in the generic tensor algebra , 2013, 1301.7511.

[28]  J. Zhou,et al.  On ω-Lie superalgebras , 2017, Journal of Algebra and Its Applications.

[29]  L. Corwin Review: M. Scheunert, The theory of Lie superalgebras; an introduction , 1980 .

[30]  S. Doty,et al.  Schur–Weyl duality for orthogonal groups , 2007, 0712.0944.

[31]  R. B. Zhang,et al.  The Brauer Category and Invariant Theory , 2012, 1207.5889.

[32]  Amitai Regev,et al.  Hook young diagrams with applications to combinatorics and to representations of Lie superalgebras , 1987 .

[33]  V. K. Patodi,et al.  On the heat equation and the index theorem , 1973 .

[34]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[35]  G. Lehrer,et al.  Cellular algebras and diagram algebras in representation theory , 2004 .

[36]  G. Lehrer,et al.  THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOGONAL GROUP , 2011, 1102.3221.