Tensile properties of shape memory alloy chiral honeycombs

The tensile properties of hexachiral honeycomb made of shape memory alloy (SMA) material are modelled and verified experimentally at different tensile loading and ambient temperature conditions. The numerical models describe the temperature-pseudoelastic behaviour of the shape memory alloy materials constituted by N1 48, Ti 46 Cu 6 alloy. Parametric analysis on the Poisson's ratio effects over large strain deformation and temperature conditions are performed, as well as the analysis of the dependence of the honeycomb stress-strain behaviour under uniaxial loading with temperature varying through the shape memory alloy phase transformation. Chiral SMA honeycomb samples are manufactured and tested under similar environmental conditions. The experimental results are compared with the numerical one, showing good convergence in terms of trends and overall quantitative values.

[1]  F. Scarpa,et al.  Small Amplitude Dynamic Properties of Ni48Ti46Cu6 SMA Ribbons: Experimental Results and Modelling , 2006 .

[2]  Ruben Gatt,et al.  On the properties of auxetic meta‐tetrachiral structures , 2008 .

[3]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[4]  John A. Shaw,et al.  Superelastic NiTi honeycombs: fabrication and experiments , 2007 .

[5]  Kenneth E. Evans,et al.  The interpretation of the strain-dependent Poisson's ratio in auxetic polyethylene , 1997 .

[6]  Fabrizio Scarpa,et al.  Evaluation of hexagonal chiral structure for morphing airfoil concept , 2005 .

[7]  R. Lakes,et al.  Indentability of Conventional and Negative Poisson's Ratio Foams , 1992 .

[8]  Giorgio Parisi,et al.  On the formal equivalence of the TAP and thermodynamic methods in the SK model , 2003 .

[9]  Massimo Ruzzene,et al.  Dynamic Response of Chiral Truss-core Assemblies , 2006 .

[10]  William A. Bullough,et al.  Trends in acoustic properties of iron particle seeded auxetic polyurethane foam , 2004 .

[11]  Shinya Kotosaka,et al.  A study of negative Poisson's ratios in auxetic honeycombs based on a large deflection model , 2004 .

[12]  K. Wojciechowski Non-chiral, molecular model of negative Poisson ratio in two dimensions , 2003 .

[13]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  K. Wojciechowski,et al.  Two-dimensional isotropic system with a negative poisson ratio , 1989 .

[15]  Fabrizio Scarpa,et al.  The electromagnetic properties of re-entrant dielectric honeycombs , 2000 .

[16]  Massimo Ruzzene,et al.  Elastic buckling of hexagonal chiral cell honeycombs , 2007 .

[17]  Roderic S. Lakes,et al.  Design Considerations for Materials with Negative Poisson’s Ratios , 1993 .

[18]  Fabrizio Scarpa,et al.  On the transverse shear modulus of negative Poisson’s ratio honeycomb structures , 2000 .

[19]  Ferdinando Auricchio,et al.  Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior , 1997 .

[20]  Massimo Ruzzene,et al.  Smart shape memory alloy chiral honeycomb , 2008 .

[21]  Massimo Ruzzene,et al.  Control of Wave Propagation in Sandwich Beams with Auxetic Core , 2003 .

[22]  R. Lakes,et al.  Properties of a chiral honeycomb with a poisson's ratio of — 1 , 1997 .

[23]  Fabrizio Scarpa,et al.  Shape memory alloys honeycomb: design and properties , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[24]  R. Lakes,et al.  Response: Negative Poisson's Ratio Materials. , 1987, Science.

[25]  Massimo Ruzzene,et al.  The hexachiral prismatic wingbox concept , 2008 .

[26]  Massimo Ruzzene,et al.  Global and local linear buckling behavior of a chiral cellular structure , 2005 .