Superintegrability and higher order polynomial algebras

We present a method to obtain higher order integrals and polynomial algebras for two-dimensional quantum superintegrable systems separable in Cartesian coordinates from ladder operators. All systems with a second- and a third-order integral of motion separable in Cartesian coordinates were studied. The integrals of motion of two of them do not generate a cubic algebra. We construct for these Hamiltonians a higher order polynomial algebra from their ladder operators. We obtain quintic and seventh-order polynomial algebras. We also give for the polynomial algebras of order 7 realizations in terms of deformed oscillator algebras. These realizations and finite-dimensional unitary representations allow us to obtain the energy spectrum. We also apply the construction to the caged anisotropic harmonic oscillator and a system involving the fourth Painlevé transcendent.

[1]  I. Marquette Supersymmetry as a method of obtaining new superintegrable systems with higher order integrals of motion , 2009, 0908.1246.

[2]  W. Miller,et al.  Models of quadratic quantum algebras and their relation to classical superintegrable systems , 2009 .

[3]  I. Marquette Superintegrability with third order integrals of motion, cubic algebras and supersymmetric quantum mechanics II:Painleve transcendent potentials , 2008, 0811.1568.

[4]  I. Marquette Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. I. Rational function potentials , 2008, 0807.2858.

[5]  M. Plyushchay,et al.  Aharonov-Bohm effect on AdS_2 and nonlinear supersymmetry of reflectionless Poschl-Teller system , 2008, 0809.2854.

[6]  P. Tempesta,et al.  Reduction of superintegrable systems: the anisotropic harmonic oscillator. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  M. Plyushchay,et al.  Finite-gap systems, tri-supersymmetry and self-isospectrality , 2008, 0806.1614.

[8]  J. Negro,et al.  Intertwining symmetry algebras of quantum superintegrable systems on the hyperboloid , 2008, 0803.2117.

[9]  L. Nieto,et al.  Self-isospectrality, special supersymmetry, and their effect on the band structure. , 2008, Physical review letters.

[10]  N. Evans,et al.  A new superintegrable Hamiltonian , 2007, 0712.3677.

[11]  P. Winternitz,et al.  Superintegrable systems with third-order integrals of motion , 2007, 0711.4783.

[12]  V. Hussin,et al.  Coherent states for Hamiltonians generated by supersymmetry , 2007, 0705.0316.

[13]  I. Buchbinder,et al.  BRST approach to Lagrangian construction for fermionic higher spin fields in AdS space , 2007, hep-th/0703049.

[14]  W. Miller,et al.  Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems , 2006 .

[15]  P. Winternitz,et al.  Polynomial Poisson algebras for classical superintegrable systems with a third-order integral of motion , 2006, math-ph/0608021.

[16]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory , 2006 .

[17]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. III. Three-dimensional classical structure theory , 2005 .

[18]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform , 2005 .

[19]  J. Negro,et al.  Polynomial Heisenberg algebras , 2004 .

[20]  S. Gravel Hamiltonians separable in cartesian coordinates and third-order integrals of motion , 2003, math-ph/0302028.

[21]  W. Miller,et al.  Superintegrable systems in Darboux spaces , 2003, math-ph/0307039.

[22]  S. Gravel,et al.  Superintegrability with third-order integrals in quantum and classical mechanics , 2002, math-ph/0206046.

[23]  J. Garćıa,et al.  Constants of motion, ladder operators and supersymmetry of the two-dimensional isotropic harmonic oscillator , 2002 .

[24]  A. Verçin,et al.  Two families of superintegrable and isospectral potentials in two dimensions , 2002, quant-ph/0201099.

[25]  J. Garćıa,et al.  Laplace-Runge-Lenz vector, ladder operators and supersymmetry , 2001 .

[26]  W. Miller,et al.  Completeness of superintegrability in two-dimensional constant-curvature spaces , 2001, math-ph/0102006.

[27]  C. Daskaloyannis Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems , 2000, math-ph/0003017.

[28]  C. Daskaloyannis,et al.  Quantum groups and their applications in nuclear physics , 1999, nucl-th/9909003.

[29]  M. Plyushchay,et al.  Supersymmetry of parafermions , 1999, hep-th/9905149.

[30]  V. Hussin,et al.  Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states , 1999 .

[31]  J. Negro,et al.  Factorization method and singular Hamiltonians , 1998 .

[32]  M. Plyushchay Deformed Heisenberg algebra with reflection , 1997, hep-th/9701091.

[33]  Georg Junker Supersymmetric Methods in Quantum and Statistical Physics , 1996 .

[34]  M. Moshinsky,et al.  The harmonic oscillator in modern physics , 1996 .

[35]  L. Vinet,et al.  Superintegrable systems: Polynomial algebras and quasi-exactly solvable Hamiltonians , 1995 .

[36]  A. Andrianov,et al.  SECOND ORDER DERIVATIVE SUPERSYMMETRY, q DEFORMATIONS AND THE SCATTERING PROBLEM , 1995 .

[37]  A. Khare,et al.  Supersymmetry and quantum mechanics , 1994, hep-th/9405029.

[38]  A. Khare,et al.  Exactly solvable noncentral potentials in two and three dimensions , 1994 .

[39]  R. Shankar The Harmonic Oscillator , 1994 .

[40]  Jamil Daboul,et al.  The Hydrogen algebra as centerless twisted Kac-Moody algebra , 1993 .

[41]  A. Khare,et al.  Supersymmetry,Shape Invariance and Exactly Solvable Noncentral Potentials , 1993, hep-th/9310104.

[42]  P. K. Aravind,et al.  Deducing the Lenz vector of the hydrogen atom from supersymmetry , 1993 .

[43]  A. Zhedanov,et al.  Mutual integrability, quadratic algebras, and dynamical symmetry , 1992 .

[44]  N. Evans Group theory of the Smorodinsky-Winternitz system , 1991 .

[45]  C. Daskaloyannis,et al.  Generalized deformed oscillator and nonlinear algebras , 1991 .

[46]  Evans,et al.  Superintegrability in classical mechanics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[47]  B. Mielnik Factorization method and new potentials with the oscillator spectrum , 1984 .

[48]  L. Gendenshtein Derivation of Exact Spectra of the Schrodinger Equation by Means of Supersymmetry , 1984 .

[49]  Edward Witten,et al.  Constraints on Supersymmetry Breaking , 1982 .

[50]  Edward Witten,et al.  Dynamical Breaking of Supersymmetry , 1981 .

[51]  R. Kiehn An extension of Hamilton's principle to include dissipative systems , 1974 .

[52]  H. McIntosh,et al.  Search for a Universal Symmetry Group in Two Dimensions , 1970 .

[53]  P. Winternitz,et al.  ON HIGHER SYMMETRIES IN QUANTUM MECHANICS , 1965 .

[54]  V. A. Dulock,et al.  On the Degeneracy of the Two-Dimensional Harmonic Oscillator , 1965 .

[55]  E. L. Hill,et al.  On the Problem of Degeneracy in Quantum Mechanics , 1940 .

[56]  V. Bargmann,et al.  Zur Theorie des Wasserstoffatoms , 1936 .

[57]  V. Fock,et al.  Zur Theorie des Wasserstoffatoms , 1935 .