A Thermogravimetric Study of Nonfossil Solid Fuels. 1. Inert Pyrolysis

Pyrolysis of six nonconventional fuels has been studied by means of nonisothermal thermogravimetric analysis from low (5 °C/min) to high heating rates (as large as 900 °C/min). The fuels tested included plastics, rubbers, and ligno-cellulosic materials, namely, polyethylene, poly(ethylene terephthalate), scrap tires, ebonite, a fresh biomass, and waste wood. A kinetic expression for pyrolysis is provided for each material. The mechanisms of thermal degradation are discussed in order to underline differences and similarities between materials.

[1]  E. Anthony Fluidized bed combustion of alternative solid fuels ; status, successes and problems of the technology , 1995 .

[2]  Pyrolysis Decomposition Kinetics of Cellulose-Based Materials by Constant Heating Rate Micropyrolysis , 1997 .

[3]  J. Kuipers,et al.  Examination and Evaluation of the Use of Screen Heaters for the Measurement of the High Temperature Pyrolysis Kinetics of Polyethene and Polypropene , 1997 .

[4]  J. Kuipers,et al.  Kinetics of the low-temperature pyrolysis of polyethene, polypropene and polystyrene modeling, experimental determination and comparison with literature models and data , 1997 .

[5]  Graboski,et al.  Fundamentals, development and scaleup of the air=oxygen stratified downdraft gasifier , 1988 .

[6]  Paul T. Williams,et al.  Pyrolysis-thermogravimetric analysis of tyres and tyre components , 1995 .

[7]  P. Salatino,et al.  A Thermogravimetric Study of Nonfossil Solid Fuels. 2. Oxidative Pyrolysis and Char Combustion , 2002 .

[8]  Hoyt C. Hottel,et al.  Rapid devolatilization of pulverized coal , 1975 .

[9]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[10]  Eric M. Suuberg,et al.  Cellulose Thermal Decomposition Kinetics: Global Mass Loss Kinetics , 1995 .

[11]  Michael Jerry Antal,et al.  Kinetics of the Thermal Decomposition of Cellulose, Hemicellulose, and Sugar Cane Bagasse , 1989 .

[12]  W. Kaminsky,et al.  Pyrolysis of plastic waste and scrap tyres in a fluid bed reactor , 1980 .

[13]  M. Mastellone,et al.  Defluidization phenomena during the pyrolysis of two plastic wastes , 2000 .

[14]  Takashi Kashiwagi,et al.  Global kinetic constants for thermal oxidative degradation of a cellulosic paper , 1992 .

[15]  R. Hurt Structure, Properties, and Reactivity of Solid Fuels , 1999 .

[16]  José L. Figueiredo,et al.  Pyrolysis kinetics of lignocellulosic materials—three independent reactions model , 1999 .

[17]  Piero Salatino,et al.  A fast heating-rate thermogravimetric study of the pyrolysis of scrap tyres , 1999 .

[18]  A. Marzocchella,et al.  Segregation of fuel particles and volatile matter during devolatilization in a fluidized bed reactor—II. Experimental , 1997 .

[19]  M. Antal,et al.  Cellulose Pyrolysis Kinetics: The Current State of Knowledge , 1995 .

[20]  M. Antal,et al.  Is the Broido-Shafizadeh model for cellulose pyrolysis true? , 1994 .

[21]  F. C. Tompkins,et al.  The thermal decomposition of potassium permanganate , 1944 .

[22]  Robert L. Braun,et al.  Global Kinetic Analysis of Complex Materials , 1999 .

[23]  N. Schwartz,et al.  The effect of heating rate on the thermal degradation of polybutadiene , 1978 .

[24]  A. Kanury Combustion Characteristics of Biomass Fuels , 1994 .

[25]  B. Leckner,et al.  Ignition and propagation of a reaction front in cross-current bed combustion of wet biofuels , 2001 .