Hairy black holes in massive gravity: Thermodynamics and phase structure

The thermodynamic properties of a static and spherically symmetric hairy black hole solution arising in massive gravity with spontaneous Lorentz breaking are investigated. The analysis is carried out by enclosing the black hole in a spherical cavity whose surface is maintained at a xed temperature T . It turns out that the ensemble is well-dened only if the \hair" parameter Q characterizing the solution is conserved. Under this condition we compute some relevant thermodynamic quantities, such as the thermal energy and entropy, and we study the stability and phase structure of the ensemble. In particular, for negative values of the hair parameter, the phase structure is isomorphic to the one of Reissner-Nordstrom black holes in the canonical ensemble. Moreover, the phase-diagram in the plan (Q;T ) has a line of rst-order phase transition that at a critical value of Q terminates in a second-order phase transition. Below this line the dominant phase consists of small, cold black holes that are long-lived and may thus contribute much more to the energy density of the Universe than what is observationally allowed for radiating black holes.

[1]  B. Feldstein Spontaneous Lorentz violation, negative energy, and the second law of thermodynamics , 2009, 0904.1212.

[2]  R. Wald,et al.  Black hole entropy is Noether charge. , 1993, Physical review. D, Particles and fields.

[3]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[4]  J. W. York ROLE OF CONFORMAL THREE-GEOMETRY IN THE DYNAMICS OF GRAVITATION. , 1972 .

[5]  S. Dubovsky,et al.  Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind , 2006, hep-th/0603158.

[6]  Hsin-Chia Cheng,et al.  Dynamics of gravity in a Higgs phase , 2005, hep-ph/0507120.

[7]  A. Wulzer,et al.  A Confining Strong First-Order Electroweak Phase Transition , 2007, 0706.3388.

[8]  Sayed Fawad Hassan,et al.  Ghost-free massive gravity with a general reference metric , 2011, 1109.3230.

[9]  R. Sundrum Gravitational Lorentz Violation and Superluminality via AdS/CFT Duality , 2007, 0708.1871.

[10]  B. Whiting,et al.  Thermodynamic ensembles and gravitation , 1990 .

[11]  D. Blas,et al.  Models of non-relativistic quantum gravity: the good, the bad and the healthy , 2010, 1007.3503.

[12]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[13]  L. Pilo,et al.  Finite Energy of Black Holes in Massive Gravity , 2011, 1105.3010.

[14]  H. Georgi,et al.  Effective field theory for massive gravitons and gravity in theory space , 2002, hep-th/0210184.

[15]  Ghost condensation and a consistent infrared modification of gravity , 2003, hep-th/0312099.

[16]  M. Zaldarriaga,et al.  Bumpy black holes from spontaneous Lorentz violation , 2007, 0706.0288.

[17]  Shing-Tung Yau,et al.  On the proof of the positive mass conjecture in general relativity , 1979 .

[18]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[19]  L. Randall,et al.  Gravitational waves from warped spacetime , 2006, hep-ph/0607158.

[20]  Sayed Fawad Hassan,et al.  Resolving the ghost problem in nonlinear massive gravity. , 2011, Physical review letters.

[21]  Fabio Capela,et al.  Black hole thermodynamics and massive gravity , 2011, 1102.0479.

[22]  G. Nardini,et al.  Gravitational backreaction effects on the holographic phase transition , 2010, 1007.1468.

[23]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[24]  S. Hawking Particle creation by black holes , 1975 .

[25]  L. Pilo,et al.  Stars and (furry) black holes in Lorentz breaking massive gravity , 2010, 1010.4773.

[26]  Claudia de Rham,et al.  Resummation of massive gravity. , 2010, Physical review letters.

[27]  D. Gross,et al.  Instability of flat space at finite temperature , 1982 .

[28]  S. Dubovsky Phases of massive gravity , 2004 .

[29]  L. Mazzanti,et al.  Holography and thermodynamics of 5D dilaton-gravity , 2008, 0812.0792.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  E. Witten A new proof of the positive energy theorem , 1981 .

[32]  Stephen W. Hawking,et al.  Gravitational radiation from colliding black holes , 1971 .

[33]  Sayed Fawad Hassan,et al.  Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity , 2011, 1111.2070.

[34]  Brown,et al.  Quasilocal energy and conserved charges derived from the gravitational action. , 1992, Physical review. D, Particles and fields.

[35]  Holography and the electroweak phase transition , 2001, hep-th/0107141.

[36]  Clifford V. Johnson,et al.  Charged AdS black holes and catastrophic holography , 1999, hep-th/9902170.

[37]  Edward Witten Anti-de Sitter Space, Thermal Phase Transition, And Confinement in Gauge Theories , 1998 .

[38]  L. Pilo,et al.  Lorentz-breaking massive gravity in curved space , 2009, 0905.1699.

[39]  J. Yokoyama,et al.  New cosmological constraints on primordial black holes , 2009, 0912.5297.

[40]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[41]  A. Tolley,et al.  Ghost free massive gravity in the Stückelberg language , 2011, 1107.3820.

[42]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[43]  J. March-Russell,et al.  Warped deformed throats have faster (electroweak) phase transitions , 2007, 0708.2060.

[44]  J. M. Nester A NEW GRAVITATIONAL ENERGY EXPRESSION WITH A SIMPLE POSITIVITY PROOF , 1981 .

[45]  York,et al.  Black-hole thermodynamics and the Euclidean Einstein action. , 1986, Physical review. D, Particles and fields.

[46]  Z. Berezhiani,et al.  Exact Spherically Symmetric Solutions in Massive Gravity , 2008, 0803.1687.

[47]  D. Page,et al.  Thermodynamics of black holes in anti-de Sitter space , 1983 .

[48]  Black hole solutions in massive gravity , 2009 .

[49]  I. Tkachev,et al.  Massive graviton as a testable cold-dark-matter candidate. , 2005, Physical review letters.