Altered synapses and gliotransmission in Alzheimer's disease and AD model mice

[1]  B. Austen,et al.  Amyloid-β Acts as a Regulator of Neurotransmitter Release Disrupting the Interaction between Synaptophysin and VAMP2 , 2012, PloS one.

[2]  M. Eguchi,et al.  Orchestrated experience-driven Arc/Arg3.1 responses are disrupted in a mouse model of Alzheimer’s disease , 2012, Nature Neuroscience.

[3]  Steven Hou,et al.  Apolipoprotein E4 effects in Alzheimer's disease are mediated by synaptotoxic oligomeric amyloid-β. , 2012, Brain : a journal of neurology.

[4]  Venkatesh N. Murthy,et al.  Activity-Dependent Regulation of Inhibition via GAD67 , 2012, The Journal of Neuroscience.

[5]  A. Romano,et al.  Glutamatergic alterations and mitochondrial impairment in a murine model of Alzheimer disease , 2012, Neurobiology of Aging.

[6]  Bert Sakmann,et al.  Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease , 2012, Proceedings of the National Academy of Sciences.

[7]  H. Vinters,et al.  Preferential accumulation of amyloid-beta in presynaptic glutamatergic terminals (VGluT1 and VGluT2) in Alzheimer's disease cortex , 2012, Neurobiology of Disease.

[8]  M. Palkovits,et al.  Astrocytes convert network excitation to tonic inhibition of neurons , 2012, BMC Biology.

[9]  A. Verkhratsky,et al.  Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer's disease , 2011, ASN neuro.

[10]  Moonhee Lee,et al.  Mechanisms of GABA release from human astrocytes , 2011, Glia.

[11]  Dietmar R. Thal,et al.  Stages of the Pathologic Process in Alzheimer Disease: Age Categories From 1 to 100 Years , 2011, Journal of neuropathology and experimental neurology.

[12]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[13]  E. Chapman,et al.  Synaptophysin Regulates the Kinetics of Synaptic Vesicle Endocytosis in Central Neurons , 2011, Neuron.

[14]  W. Mobley,et al.  Implications for treatment: GABAA receptors in aging, Down syndrome and Alzheimer’s disease , 2011, Journal of neurochemistry.

[15]  R. Bartha,et al.  Reduced hippocampal glutamate in Alzheimer disease , 2011, Neurobiology of Aging.

[16]  P. Mcgeer,et al.  Astrocytes are GABAergic cells that modulate microglial activity , 2011, Glia.

[17]  S. Rapoport,et al.  Disturbed neurotransmitter transporter expression in Alzheimer's disease brain. , 2011, Journal of Alzheimer's disease : JAD.

[18]  Hee-Sup Shin,et al.  Channel-Mediated Tonic GABA Release from Glia , 2010, Science.

[19]  T. Branco,et al.  Examining size–strength relationships at hippocampal synapses using an ultrastructural measurement of synaptic release probability , 2010, Journal of structural biology.

[20]  S. Baekkeskov,et al.  Two distinct mechanisms target GAD67 to vesicular pathways and presynaptic clusters , 2010, The Journal of cell biology.

[21]  D. Attwell,et al.  Do astrocytes really exocytose neurotransmitters? , 2010, Nature Reviews Neuroscience.

[22]  G. Halliday,et al.  Focal demyelination in Alzheimer’s disease and transgenic mouse models , 2010, Acta Neuropathologica.

[23]  R. Sweet,et al.  Human Neuroscience , 2022 .

[24]  E. Masliah,et al.  APP transgenic modeling of Alzheimer’s disease: mechanisms of neurodegeneration and aberrant neurogenesis , 2009, Brain Structure and Function.

[25]  J. Chuckowree,et al.  Axonopathy and cytoskeletal disruption in degenerative diseases of the central nervous system , 2009, Brain Research Bulletin.

[26]  B. Spann,et al.  Transcriptome Analysis of Synaptoneurosomes Identifies Neuroplasticity Genes Overexpressed in Incipient Alzheimer's Disease , 2009, PloS one.

[27]  Jose Julio Rodriguez,et al.  Astroglia in dementia and Alzheimer's disease , 2009, Cell Death and Differentiation.

[28]  I Ferrer,et al.  Widespread changes in dendritic spines in a model of Alzheimer's disease. , 2009, Cerebral cortex.

[29]  B. Hyman,et al.  Synchronous Hyperactivity and Intercellular Calcium Waves in Astrocytes in Alzheimer Mice , 2009, Science.

[30]  Serge Charpak,et al.  GABA, a forgotten gliotransmitter , 2008, Progress in Neurobiology.

[31]  A. Delacourte,et al.  Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease , 2008, Neurobiology of Aging.

[32]  P. Robinson,et al.  A rapid Percoll gradient procedure for preparation of synaptosomes , 2008, Nature Protocols.

[33]  Arthur Konnerth,et al.  Clusters of Hyperactive Neurons Near Amyloid Plaques in a Mouse Model of Alzheimer's Disease , 2008, Science.

[34]  G. Halliday,et al.  Cytoskeletal alterations differentiate presenilin-1 and sporadic Alzheimer’s disease , 2008, Acta Neuropathologica.

[35]  G. Richerson,et al.  Nonvesicular Inhibitory Neurotransmission via Reversal of the GABA Transporter GAT-1 , 2007, Neuron.

[36]  D. Bennett,et al.  Paradoxical Upregulation of Glutamatergic Presynaptic Boutons during Mild Cognitive Impairment , 2007, The Journal of Neuroscience.

[37]  Anatol C. Kreitzer,et al.  Aberrant Excitatory Neuronal Activity and Compensatory Remodeling of Inhibitory Hippocampal Circuits in Mouse Models of Alzheimer's Disease , 2007, Neuron.

[38]  G. Knott,et al.  GAD67-Mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex , 2007, Neuron.

[39]  W. Klein,et al.  Aβ Oligomer-Induced Aberrations in Synapse Composition, Shape, and Density Provide a Molecular Basis for Loss of Connectivity in Alzheimer's Disease , 2007, The Journal of Neuroscience.

[40]  J. Csernansky,et al.  Spatial relationship between synapse loss and β‐amyloid deposition in Tg2576 mice , 2007, The Journal of comparative neurology.

[41]  W. Klein,et al.  Molecules that Disrupt Memory Circuits in Alzheimer’s Disease: The Attack on Synapses by Aβ Oligomers (ADDLs) , 2007 .

[42]  Patrick R Hof,et al.  Life and death of neurons in the aging cerebral cortex. , 2007, International review of neurobiology.

[43]  Bruno Bontempi,et al.  Memories: molecules and circuits , 2007 .

[44]  D. Bennett,et al.  The amyloid pathology progresses in a neurotransmitter-specific manner , 2006, Neurobiology of Aging.

[45]  F. Schmitt,et al.  Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment , 2006, Neurobiology of Aging.

[46]  J. Wuu,et al.  Differential Expression of Synaptic Proteins in the Frontal and Temporal Cortex of Elderly Subjects With Mild Cognitive Impairment , 2006, Journal of neuropathology and experimental neurology.

[47]  Juan Burrone,et al.  Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons , 2006, Nature Neuroscience.

[48]  L. Raiteri,et al.  Glia re‐sealed particles freshly prepared from adult rat brain are competent for exocytotic release of glutamate , 2006, Journal of neurochemistry.

[49]  Nathan R. Wilson,et al.  Presynaptic Regulation of Quantal Size by the Vesicular Glutamate Transporter VGLUT1 , 2005, The Journal of Neuroscience.

[50]  C. Sotelo,et al.  Quantitative effects produced by modifications of neuronal activity on the size of GABAA receptor clusters in hippocampal slice cultures , 2004, The European journal of neuroscience.

[51]  J. Wegiel,et al.  Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease , 2004, Neurobiology of Aging.

[52]  R. Shigemoto,et al.  Structural involvement of the glutamatergic presynaptic boutons in a transgenic mouse model expressing early onset amyloid pathology , 2003, Neuroscience Letters.

[53]  S. Scheff,et al.  Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies , 2003, Neurobiology of Aging.

[54]  J. Vickers,et al.  Direct determination of the proportion of intra- and extra-cellular neocortical neurofibrillary tangles in Alzheimer’s disease , 2003, Brain Research.

[55]  J. Storm-Mathisen,et al.  The Expression of Vesicular Glutamate Transporters Defines Two Classes of Excitatory Synapse , 2001, Neuron.

[56]  J. Vickers,et al.  The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer’s disease , 2001, Neuroscience.

[57]  N. Cairns,et al.  Differences between GABA levels in Alzheimer's disease and Down syndrome with Alzheimer-like neuropathology , 2001, Naunyn-Schmiedeberg's Archives of Pharmacology.

[58]  J. Morris,et al.  Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease , 1999, Annals of neurology.

[59]  N. Bogdanovic,et al.  GABA transporters (GAT-1) in Alzheimer's disease , 1999, Journal of Neural Transmission.

[60]  D. L. Martin,et al.  Two isoforms of glutamate decarboxylase: why? , 1998, Trends in pharmacological sciences.

[61]  S. Goldman,et al.  Astrocyte-mediated potentiation of inhibitory synaptic transmission , 1998, Nature Neuroscience.

[62]  E. Mandelkow,et al.  Tau in Alzheimer's disease. , 1998, Trends in cell biology.

[63]  E. Hirsch,et al.  Striatal Expression of Glutamic Acid Decarboxylase Gene in Alzheimer's Disease , 1998, Journal of neurochemistry.

[64]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[65]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[66]  E. Jorgensen,et al.  Identification and characterization of the vesicular GABA transporter , 1997, Nature.

[67]  D. Borchelt,et al.  Accelerated Amyloid Deposition in the Brains of Transgenic Mice Coexpressing Mutant Presenilin 1 and Amyloid Precursor Proteins , 1997, Neuron.

[68]  T. Yagi,et al.  Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[69]  D. Salmon,et al.  Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the major correlate of cognitive impairment , 1991, Annals of neurology.

[70]  P. Francis,et al.  Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer's disease. , 1988, Brain : a journal of neurology.

[71]  M. Laakso,et al.  A post-mortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer's disease , 1988, Journal of the Neurological Sciences.

[72]  C. R. Craig,et al.  gamma-Aminobutyric acid concentration, L-glutamate 1-decarboxylase activity, and properties of the gamma-aminobutyric and postsynaptic receptor in cobalt epilepsy in the rat , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.