Author Proof MOCell: A Cellular Genetic Algorithm

This paper introduces a new cellular genetic algorithm for solving multiobjective continuous optimization problems. Our approach is characterized by using an external archive to store nondominated solutions and a feedback mechanism in which solutions from this archive randomly replace existing individuals in the population after each iteration. The result is a simple and elitist algorithm called MOCell. Our proposal has been evaluated with both constrained and unconstrained problems and compared against NSGA-II and SPEA2, two state-of-the-art evolutionary multiobjective optimizers. For the studied benchmark, our experiments indicate that MOCell obtains competitive results in terms of convergence and hypervolume, and it clearly outperforms the other two compared algorithms concerning the diversity of the solutions along the Pareto front. C � 2009 Wiley Periodicals, Inc.

[1]  Francisco Luna,et al.  jMetal: a Java Framework for Developing Multi-Objective Optimization Metaheuristics , 2006 .

[2]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[3]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[4]  Enrique Alba,et al.  Decentralized Cellular Evolutionary Algorithms , 2005, Handbook of Bioinspired Algorithms and Applications.

[5]  Enrique Alba,et al.  The exploration/exploitation tradeoff in dynamic cellular genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[6]  Masahiro Tanaka,et al.  GA-based decision support system for multicriteria optimization , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[7]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[8]  Michael Kirley,et al.  MEA: a metapopulation evolutionary algorithm for multi-objective optimisation problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[9]  A. Tamhane,et al.  Multiple Comparison Procedures , 2009 .

[10]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[11]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[12]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[13]  Marco Laumanns,et al.  A Spatial Predator-Prey Approach to Multi-objective Optimization: A Preliminary Study , 1998, PPSN.

[14]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[15]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[16]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[17]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[18]  Enrique Alba,et al.  A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs , 2007, Comput. Commun..

[19]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[20]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[21]  Tadahiko Murata,et al.  Cellular Genetic Algorithm for Multi-Objective Optimization , 2001 .

[22]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[23]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.