State-selective modulation of heterotrimeric Gαs signaling with macrocyclic peptides

[1]  Anthony Leyme,et al.  Revealing the Activity of Trimeric G-proteins in Live Cells with a Versatile Biosensor Design , 2020, Cell.

[2]  John D. McCorvy,et al.  “TRUPATH, an Open-Source Biosensor Platform for Interrogating the GPCR Transducerome” , 2020, Nature Chemical Biology.

[3]  Catrin Sohrabi,et al.  Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery , 2020, Nature Reviews Chemistry.

[4]  J. Fernandez-Banet,et al.  The KRASG12C Inhibitor, MRTX849, Provides Insight Toward Therapeutic Susceptibility of KRAS Mutant Cancers in Mouse Models and Patients. , 2019, Cancer discovery.

[5]  J. Desai,et al.  The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity , 2019, Nature.

[6]  Johanna K. S. Tiemann,et al.  Structural Insights into the Process of GPCR-G Protein Complex Formation , 2019, Cell.

[7]  D. Pei,et al.  Understanding Cell Penetration of Cyclic Peptides. , 2019, Chemical reviews.

[8]  R. MacKinnon,et al.  Molecular basis of signaling specificity between GIRK channels and GPCRs , 2018, eLife.

[9]  Joshua A. Kritzer,et al.  Cell Penetration Profiling Using the Chloroalkane Penetration Assay. , 2018, Journal of the American Chemical Society.

[10]  W. Weis,et al.  The Molecular Basis of G Protein-Coupled Receptor Activation. , 2018, Annual review of biochemistry.

[11]  P. Stewart,et al.  Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor , 2018, Nature Communications.

[12]  K. Shokat,et al.  Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP , 2018, Cell.

[13]  D. Alessi,et al.  LRRK2 kinase in Parkinson's disease , 2018, Science.

[14]  Xiao-Feng Xiong,et al.  Structure–Activity Relationship Studies of the Cyclic Depsipeptide Natural Product YM‐254890, Targeting the Gq Protein , 2017, ChemMedChem.

[15]  J. Aoki,et al.  Purinergic Receptor Transactivation by the β2-Adrenergic Receptor Increases Intracellular Ca2+ in Nonexcitable Cells , 2017, Molecular Pharmacology.

[16]  I. Kufareva,et al.  The GAPs, GEFs, GDIs and…now, GEMs: New kids on the heterotrimeric G protein signaling block , 2017, Cell cycle.

[17]  Hiroaki Suga,et al.  A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets. , 2017, Chemical communications.

[18]  J. Steyaert,et al.  Nanobodies to Study G Protein-Coupled Receptor Structure and Function. , 2017, Annual review of pharmacology and toxicology.

[19]  D. Gloriam,et al.  Total synthesis and structure-activity relationship studies of a series of selective G protein inhibitors. , 2016, Nature chemistry.

[20]  R. Dey,et al.  Regulation, Signaling, and Physiological Functions of G-Proteins. , 2016, Journal of molecular biology.

[21]  J. Tesmer,et al.  Structure of the Regulator of G Protein Signaling 8 (RGS8)-G alpha q Complex: MOLECULAR BASIS FOR G alpha SELECTIVITY. , 2016 .

[22]  J. Tesmer,et al.  Structure of the Regulator of G Protein Signaling 8 (RGS8)-Gαq Complex , 2016, The Journal of Biological Chemistry.

[23]  Ron O. Dror,et al.  Structural basis for nucleotide exchange in heterotrimeric G proteins , 2015, Science.

[24]  P. Little,et al.  Total synthesis of the cyclic depsipeptide YM-280193, a platelet aggregation inhibitor. , 2015, Organic letters.

[25]  P. Lockhart,et al.  Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with α-synuclein pathology. , 2014, American journal of human genetics.

[26]  S. Sagan,et al.  Cell‐penetrating peptides: 20 years later, where do we stand? , 2013, FEBS letters.

[27]  S. Seshagiri,et al.  The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer , 2013, Nature Reviews Cancer.

[28]  Carla Mattos,et al.  A comprehensive survey of Ras mutations in cancer. , 2012, Cancer research.

[29]  Yuuki Hayashi,et al.  Discovery of macrocyclic peptides armed with a mechanism-based warhead: isoform-selective inhibition of human deacetylase SIRT2. , 2012, Angewandte Chemie.

[30]  T. Katoh,et al.  Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. , 2011, Chemistry & biology.

[31]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[32]  T. Katoh,et al.  Flexizymes for genetic code reprogramming , 2011, Nature Protocols.

[33]  T. Corson,et al.  Small-Molecule Hydrophobic Tagging Induced Degradation of HaloTag Fusion Proteins , 2011, Nature Chemical Biology.

[34]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[35]  T. Hakoshima,et al.  Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule , 2010, Proceedings of the National Academy of Sciences.

[36]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[37]  Shahab M. Danesh,et al.  Recognition of the activated states of Galpha13 by the rgRGS domain of PDZRhoGEF. , 2008, Structure.

[38]  Hiroshi Murakami,et al.  Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme , 2008, Nature.

[39]  R. Roberts,et al.  Evolution of class-specific peptides targeting a hot spot of the Galphas subunit. , 2008, Journal of molecular biology.

[40]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[41]  L. Jan,et al.  Turning G proteins on and off using peptide ligands. , 2006, ACS chemical biology.

[42]  Brian Kuhlman,et al.  Minimal determinants for binding activated G alpha from the structure of a G alpha(i1)-peptide dimer. , 2006, Biochemistry.

[43]  Hiroshi Murakami,et al.  A highly flexible tRNA acylation method for non-natural polypeptide synthesis , 2006, Nature Methods.

[44]  Alan V. Smrcka,et al.  Differential Targeting of Gßγ-Subunit Signaling with Small Molecules , 2006, Science.

[45]  Douglas M. Yau,et al.  A new approach to producing functional G alpha subunits yields the activated and deactivated structures of G alpha(12/13) proteins. , 2006, Biochemistry.

[46]  T. Kozasa,et al.  Snapshot of Activated G Proteins at the Membrane: The Gαq-GRK2-Gßγ Complex , 2005, Science.

[47]  Christopher A. Johnston,et al.  A bifunctional Gαi/Gαs modulatory peptide that attenuates adenylyl cyclase activity , 2005 .

[48]  T. K. Harden,et al.  Structure of Gαi1 Bound to a GDP-Selective Peptide Provides Insight into Guanine Nucleotide Exchange , 2005 .

[49]  S. Sprang,et al.  Structure of the p115RhoGEF rgRGS domain–Gα13/i1 chimera complex suggests convergent evolution of a GTPase activator , 2005, Nature Structural &Molecular Biology.

[50]  M. Taniguchi,et al.  A Novel Gαq/11-selective Inhibitor* , 2004, Journal of Biological Chemistry.

[51]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[52]  H. Murakami,et al.  Designer ribozymes: programming the tRNA specificity into flexizyme. , 2004, Journal of the American Chemical Society.

[53]  Richard W Roberts,et al.  In vitro selection of state-specific peptide modulators of G protein signaling using mRNA display. , 2004, Biochemistry.

[54]  H. Murakami,et al.  A versatile tRNA aminoacylation catalyst based on RNA. , 2003, Chemistry & biology.

[55]  Wei He,et al.  Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å , 2001, Nature.

[56]  B. Kobilka,et al.  Different effects of Gsalpha splice variants on beta2-adrenoreceptor-mediated signaling. The Beta2-adrenoreceptor coupled to the long splice variant of Gsalpha has properties of a constitutively active receptor. , 1998, The Journal of biological chemistry.

[57]  S. Sprang,et al.  Crystal structure of the adenylyl cyclase activator Gsalpha. , 1997, Science.

[58]  S R Sprang,et al.  Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. , 1997, Science.

[59]  S. Sprang,et al.  The structure of the G protein heterotrimer Giα1 β 1 γ 2 , 1995, Cell.

[60]  Heidi E. Hamm,et al.  Structural determinants for activation of the α-subunit of a heterotrimeric G protein , 1994, Nature.

[61]  H. Bourne,et al.  Increased mitogenic responsiveness of Swiss 3T3 cells expressing constitutively active Gs alpha. , 1990, Biochemical and biophysical research communications.

[62]  H. Bourne,et al.  Cholera toxin induces cAMP-independent degradation of Gs. , 1989, The Journal of biological chemistry.

[63]  Douglas M. Yau,et al.  A New Approach to Producing Functional G α Subunits Yields the Activated and Deactivated Structures of G α 12/13 Proteins , 2009 .

[64]  R. Roberts,et al.  Evolution of Class-Specific Peptides Targeting a Hot Spot of the G α s Subunit , 2008 .

[65]  Vincent B. Chen,et al.  Acta Crystallographica Section D Biological , 2001 .

[66]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[67]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[68]  S. Sprang,et al.  Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. , 1997, Science.

[69]  S. Sprang,et al.  The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. , 1995, Cell.

[70]  H. Hamm,et al.  Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. , 1994, Nature.