The Discrete Duality Finite Volume method for the Stokes equations on 3-D polyhedral meshes

We develop a Discrete Duality Finite Volume (DDFV) method for the three-dimensional steady Stokes problem with a variable viscosity coefficient on polyhedral meshes. Under very general assumptions on the mesh, which may admit non-convex and non-conforming polyhedrons, we prove the stability and well-posedness of the scheme. We also prove the convergence of the numerical approximation to the velocity, velocity gradient and pressure, and derive a priori estimates for the corresponding approximation error. Final numerical experiments confirm the theoretical predictions.

[1]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[2]  Gianmarco Manzini,et al.  The Discrete Duality Finite Volume Method for Convection-diffusion Problems , 2010, SIAM J. Numer. Anal..

[3]  F. Hermeline Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes , 2007 .

[4]  Sarah Delcourte DEVELOPPEMENT DE METHODES DE VOLUMES FINIS POUR LA MECANIQUE DES FLUIDES , 2007 .

[5]  Michael Gutnic,et al.  Convergence of Finite Volume Approximations for a Nonlinear Elliptic-Parabolic Problem: A "Continuous" Approach , 2004, SIAM J. Numer. Anal..

[6]  Robert Eymard,et al.  A cell-centred finite volume approximation for second order partial derivative operators with full matrix on unstructured meshes in any space dimension , 2005 .

[7]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[8]  Franck Boyer,et al.  Nonoverlapping Schwarz algorithm for solving two-dimensional m-DDFV schemes , 2010 .

[9]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[10]  Gianmarco Manzini,et al.  A finite volume method for advection-diffusion problems in convection-dominated regimes , 2008 .

[11]  Gianmarco Manzini,et al.  An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .

[12]  Stella Krell Stabilized DDFV schemes for stokes problem with variable viscosity on general 2D meshes , 2011 .

[13]  Gianmarco Manzini,et al.  Mesh locking effects in the finite volume solution of 2-D anisotropic diffusion equations , 2007, J. Comput. Phys..

[14]  F. Boyer,et al.  Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .

[15]  Gianmarco Manzini,et al.  Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..

[16]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[17]  Gianmarco Manzini,et al.  A Higher-Order Formulation of the Mimetic Finite Difference Method , 2008, SIAM J. Sci. Comput..

[18]  F. Brezzi,et al.  On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .

[19]  Gianmarco Manzini,et al.  Flux reconstruction and solution post-processing in mimetic finite difference methods , 2008 .

[20]  Lourenço Beirão da Veiga,et al.  A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.

[21]  Pascal Omnes,et al.  A Discrete Duality Finite Volume Approach to Hodge Decomposition and div-curl Problems on Almost Arbitrary Two-Dimensional Meshes , 2007, SIAM J. Numer. Anal..

[22]  Gianmarco Manzini,et al.  Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..

[23]  Robert Eymard,et al.  A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.

[24]  Yves Coudière,et al.  CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .

[25]  F. Hermeline,et al.  A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .

[26]  Franck Boyer,et al.  Finite Volume Method for 2D Linear and Nonlinear Elliptic Problems with Discontinuities , 2008, SIAM J. Numer. Anal..

[27]  Enrico Bertolazzi,et al.  ON VERTEX RECONSTRUCTIONS FOR CELL-CENTERED FINITE VOLUME APPROXIMATIONS OF 2D ANISOTROPIC DIFFUSION PROBLEMS , 2007 .

[28]  Gianmarco Manzini,et al.  A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems , 2011 .

[29]  Gianmarco Manzini,et al.  Convergence analysis of the high-order mimetic finite difference method , 2009, Numerische Mathematik.

[30]  Gianmarco Manzini,et al.  Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..

[31]  Robert Eymard,et al.  Study of the mixed finite volume method for Stokes and Navier‐Stokes equations , 2009 .

[32]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.