Vanadium Diboride (VB2) Synthesized at High Pressure: Elastic, Mechanical, Electronic, and Magnetic Properties and Thermal Stability.

Vanadium diboride (VB2) with an AlB2-type structure has been synthesized at 8 GPa and 1700 K in a D-DIA-type multianvil apparatus. The obtained bulk modulus is B0 = 262(2) GPa with fixed B' = 4.0 for VB2 via high-pressure X-ray diffraction measurements. Meanwhile, VB2 has also been demonstrated to possess a high Vickers hardness of 27.2 ± 1.5 GPa, a high thermal stability of 1410 K in air, among the highest for transition-metal borides, and an extremely low resistivity value (41 μΩ cm) at room temperature. Results from first-principles calculations regarding the mechanical and electronic properties of VB2 are largely consistent with the experimental observations and further suggest that VB2 possesses simultaneously the properties of a hard and refractory ceramic and those of an excellent electric conductor.

[1]  Andreas Savin,et al.  ELF: The Electron Localization Function , 1997 .

[2]  Pei Wang,et al.  Elastic, magnetic and electronic properties of iridium phosphide Ir2P , 2016, Scientific Reports.

[3]  A. K. Suri,et al.  Processing and properties of monolithic TiB2 based materials , 2006 .

[4]  Defeng Zhou,et al.  Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study , 2006 .

[5]  D. Portehault,et al.  Nanoscaled metal borides and phosphides: recent developments and perspectives. , 2013, Chemical reviews.

[6]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[7]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[8]  Chuanwei Cheng,et al.  First-principles study of structural, electronic and elastic properties of diboride of vanadium , 2009 .

[9]  Gustaaf Van Tendeloo,et al.  Discovery of a superhard iron tetraboride superconductor. , 2013, Physical review letters.

[10]  Z. Kou,et al.  Diamond-cBN alloy: A universal cutting material , 2015 .

[11]  Paul F. McMillan,et al.  New materials from high-pressure experiments , 2002, Nature materials.

[12]  T. Yildirim,et al.  Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study , 2007, 0708.3694.

[13]  K. Sairam,et al.  Reaction spark plasma sintering of niobium diboride , 2014 .

[14]  Z. A. Munir,et al.  Consolidation and properties of binderless sub-micron tungsten carbide by field-activated sintering , 2004 .

[15]  S. Tolbert,et al.  Structure of superhard tungsten tetraboride: A missing link between MB2 and MB12 higher borides , 2015, Proceedings of the National Academy of Sciences.

[16]  Walter Steurer,et al.  Transition Metal Borides: Superhard versus Ultra‐incompressible , 2008 .

[17]  S. Aydin,et al.  First-principles calculations of MnB 2 , TcB 2 , and ReB 2 within the ReB 2 -type structure , 2009 .

[18]  S. Aydin,et al.  First-principles calculations of MnB2, TcB2, and ReB2 within the ReB2-type structure , 2009 .

[19]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[20]  Jiecai Han,et al.  The ideal strength of transition metal diborides TMB2 (TM = Ti, Zr, Hf): Plastic anisotropy and the role of prismatic slip , 2010 .

[21]  Julian D. Maynard,et al.  Elastic constants and crystal anisotropy of titanium diboride , 1997 .

[22]  C. Meng,et al.  Hardness and elastic moduli of high pressure synthesized MoB2 and WB2 compacts , 2013 .

[23]  Richard B. Kaner,et al.  Designing Superhard Materials , 2005, Science.

[24]  A. L. Ivanovskii,et al.  Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations , 2008, 0804.0897.

[25]  T. Cui,et al.  WB2: not a superhard material for strong polarization character of interlayer W-B bonding. , 2017, Physical chemistry chemical physics : PCCP.

[26]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[27]  Bernd G. Pfrommer,et al.  Relaxation of Crystals with the Quasi-Newton Method , 1997 .

[28]  Ruifeng Zhang,et al.  Ultrastrong Boron Frameworks in ZrB12: A Highway for Electron Conducting , 2017, Advanced materials.

[29]  Xiao Dong,et al.  Ab initio study of the formation of transparent carbon under pressure , 2010, 1003.1569.

[30]  H. Mao,et al.  Nanocrystalline tungsten carbide: As incompressible as diamond , 2009 .

[31]  Changfeng Chen,et al.  Is osmium diboride an ultra-hard material? , 2008, Journal of the American Chemical Society.

[32]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[33]  Yanming Ma,et al.  Electronic structure, phase stability, and hardness of the osmium borides, carbides, nitrides, and oxides: First-principles calculations , 2008 .

[34]  W. Nix,et al.  Modeling Plasticity at the Micrometer Scale , 1999, Naturwissenschaften.

[35]  S. Tolbert,et al.  Superhard Rhenium/Tungsten Diboride Solid Solutions. , 2016, Journal of the American Chemical Society.

[36]  Richard B. Kaner,et al.  Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure , 2007, Science.

[37]  Stuart Licht,et al.  Renewable highest capacity VB2/air energy storage. , 2008, Chemical communications.

[38]  Julietta V. Rau,et al.  New Hard and Superhard Materials: RhB1.1 and IrB1.35 , 2009 .

[39]  J. Haines,et al.  Compressibility of AlB2-type transition metal diborides , 2002 .

[40]  T. Cui,et al.  Investigating Robust Honeycomb Borophenes Sandwiching Manganese Layers in Manganese Diboride. , 2016, Inorganic chemistry.

[41]  S. Tolbert,et al.  Toward inexpensive superhard materials: tungsten tetraboride-based solid solutions. , 2012, Journal of the American Chemical Society.

[42]  A. K. Suri,et al.  Synthesis and consolidation of titanium diboride , 2007 .

[43]  Z. Kou,et al.  Is Rhenium Diboride a Superhard Material? , 2008 .

[44]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[45]  S. Endo,et al.  The Generation of Ultrahigh Hydrostatic Pressures by a Split Sphere Apparatus , 1970 .

[46]  H. Inui,et al.  Temperature dependence of thermal expansion and elastic constants of single crystals of ZrB2 and the suitability of ZrB2 as a substrate for GaN film , 2003 .

[47]  F. Peng,et al.  Low-compressibility of tungsten tetraboride: a high pressure X-ray diffraction study , 2011 .

[48]  L. Daemen,et al.  Thermal equation of state of rhenium diboride by high pressure-temperature synchrotron x-ray studies , 2008 .

[49]  G. S. Painter,et al.  Electronic and structural origin of ultraincompressibility of 5d transition-metal diborides MB(2) (M=W, Re, Os). , 2008, Physical review letters.

[50]  Yanming Ma,et al.  Exploring Hardness and the Distorted sp2 Hybridization of B–B Bonds in WB3 , 2014 .

[51]  F. Birch,et al.  Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300°K , 1978 .

[52]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[53]  Z. Kou,et al.  Ultrasonic and hardness measurements for ultrahigh pressure prepared WB ceramics , 2011 .

[54]  R. Jeanloz,et al.  Static compression of Ca(OH)2 at room temperature: Observations of amorphization and equation of sta , 1990 .

[55]  P. Rogl,et al.  Microhardness of Czochralski-grown single crystals of VB2 , 1997 .

[56]  A. L. Ivanovskii,et al.  Hardness of hexagonal AlB2-like diborides of s, p and d metals from semi-empirical estimations , 2013 .

[57]  S. Tolbert,et al.  Enhancing the Hardness of Superhard Transition-Metal Borides: Molybdenum-Doped Tungsten Tetraboride , 2016 .

[58]  Sergey V. Ovsyannikov,et al.  Peierls distortion, magnetism, and high hardness of manganese tetraboride , 2014 .

[59]  R. F. Zhang,et al.  Stability and strength of transition-metal tetraborides and triborides. , 2012, Physical review letters.

[60]  D. He,et al.  Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4 , 2014, Journal of Superhard Materials.

[61]  Xuri Huang,et al.  Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction. , 2017, Journal of the American Chemical Society.

[62]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[63]  Lei Wu,et al.  The bond ionicity of MB2 (M = Mg, Ti, V, Cr, Mn, Zr, Hf, Ta, al and Y) , 2001 .

[64]  R. Munro Material Properties of Titanium Diboride , 2000, Journal of research of the National Institute of Standards and Technology.

[65]  S. Okada,et al.  Single-crystal growth and properties of CrB, Cr3B4, Cr2B3 and CrB2 from high-temperature aluminum solutions , 1996 .

[66]  A. V. Fedorchenko,et al.  Electronic structure and magnetic properties of transition metal diborides , 2009 .

[67]  Richard B. Kaner,et al.  Tungsten tetraboride, an inexpensive superhard material , 2011, Proceedings of the National Academy of Sciences.

[68]  D. He,et al.  Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN , 2016 .

[69]  G. Hilmas,et al.  Synthesis, densification, and mechanical properties of TaB2 , 2008 .

[70]  Jianzhong Zhang,et al.  In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics , 1996 .

[71]  Baochang Liu,et al.  Hardness, elastic, and electronic properties of chromium monoboride , 2015 .