Identification of groundnut (Arachis hypogaea) SSR markers suitable for multiple resistance traits QTL mapping in African germplasm

[1]  Suvendu Mondal,et al.  Identification of quantitative trait loci for bruchid (Caryedon serratus Olivier) resistance components in cultivated groundnut (Arachis hypogaea L.) , 2014, Molecular Breeding.

[2]  G. He,et al.  Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database , 2012, BMC Research Notes.

[3]  S. N. Nigam,et al.  An International Reference Consensus Genetic Map with 897 Marker Loci Based on 11 Mapping Populations for Tetraploid Groundnut (Arachis hypogaea L.) , 2012, PloS one.

[4]  L. Tshilenge-Lukanda,et al.  Epidemiology of the Groundnut (Arachis hypogaea L.) Leaf Spot Disease: Genetic Analysis and Developmental Cycles , 2012 .

[5]  Emmanuel Monyo,et al.  Advances in Arachis genomics for peanut improvement. , 2012, Biotechnology advances.

[6]  R. Varshney,et al.  Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea) , 2012 .

[7]  Suvendu Mondal,et al.  Development of genic molecular markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.) , 2012, Euphytica.

[8]  H. T. Stalker,et al.  A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut , 2012, BMC Genomics.

[9]  B. Rosen,et al.  Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.) , 2012, BMC Plant Biology.

[10]  H. L. Nadaf,et al.  Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.) , 2011, Molecular Breeding.

[11]  S. Knapp,et al.  An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations , 2011, Theoretical and Applied Genetics.

[12]  P. Dang,et al.  Development of trinucleotide (GGC)n SSR markers in peanut (Arachis hypogaea L.) , 2010 .

[13]  Junliang Yang,et al.  Response surface methodology used for statistical optimization of jiean-peptide production by Bacillus subtilis cells adsorbed on wood chips , 2010 .

[14]  Yunbi Xu,et al.  The genetic dissection of quantitative traits in crops , 2010 .

[15]  H. Xia,et al.  EST sequencing and SSR marker development from cultivated peanut (Arachis hypogaea L.) , 2010 .

[16]  H. T. Stalker,et al.  PEANUT BREEDING AND GENETIC RESOURCES , 2010 .

[17]  Liu Haiyan,et al.  Development and utilizaiton of orthologous SSR markers in Arachis through soybean (Glycine max) EST. , 2010 .

[18]  J. M. Araújo,et al.  In vivo assessment of possible probiotic properties of Zymomonas mobilis in a Wistar rat model , 2010 .

[19]  Hong Yan Development and Utilizaiton of Orthologous SSR Markers in Arachis through Soybean (Glycine max) EST , 2010 .

[20]  Xiaoping Chen,et al.  A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome , 2010, BMC Plant Biology.

[21]  R. Varshney,et al.  Genetic relationships among seven sections of genus Arachis studied by using SSR markers , 2010, BMC Plant Biology.

[22]  S. N. Nigam,et al.  High level of natural variation in a groundnut (Arachis hypogaea L.) germplasm collection assayed by selected informative SSR markers , 2009 .

[23]  R. Varshney,et al.  Identification of candidate genome regions controlling disease resistance in Arachis , 2009, BMC Plant Biology.

[24]  A. Tatem,et al.  Food and Agriculture Organisation of the United Nations , 2009 .

[25]  Y. Zafar,et al.  PARENTAGE CONFIRMATION OF COTTON HYBRIDS USING MOLECULAR MARKERS , 2009 .

[26]  S. N. Nigam,et al.  The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.) , 2009, Theoretical and Applied Genetics.

[27]  J. Guiamet,et al.  Senescence-associated degradation of chloroplast proteins inside and outside the organelle. , 2008, Plant biology.

[28]  R. Varshney,et al.  Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea) , 2008, BMC Plant Biology.

[29]  A. U. Izge,et al.  Levels of variability in groundnut (Arachis hypogaea L.) to cercospora leaf spot disease implication for selection , 2007 .

[30]  A. Culbreath,et al.  Characterization of early leaf spot suppression by strip tillage in peanut. , 2007, Phytopathology.

[31]  E. Mace,et al.  A high-throughput DNA extraction protocol for tropical molecular breeding programs , 2007, Plant Molecular Biology Reporter.

[32]  J. H. Crouch,et al.  SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases , 2006, Euphytica.

[33]  D. Grattapaglia,et al.  A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae) , 2005, Theoretical and Applied Genetics.

[34]  Kejun Liu,et al.  PowerMarker: an integrated analysis environment for genetic marker analysis , 2005, Bioinform..

[35]  P. Dang,et al.  Identification of Transcripts Involved in Resistance Responses to Leaf Spot Disease Caused by Cercosporidium personatum in Peanut (Arachis hypogaea). , 2005, Phytopathology.

[36]  S. Kresovich,et al.  Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome , 2004, BMC Plant Biology.

[37]  R. Pittman,et al.  Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.) , 2003, BMC Plant Biology.

[38]  A. Podile,et al.  Biological control of peanut diseases. , 2002 .

[39]  H. T. Stalker,et al.  Molecular Markers of Arachis and Marker-Assisted Selection , 2001 .

[40]  Markus Schuelke,et al.  An economic method for the fluorescent labeling of PCR fragments , 2000, Nature Biotechnology.

[41]  J. Witte,et al.  Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. , 2000, American journal of human genetics.

[42]  L. Kubena,et al.  Oxidative degradation and detoxification of mycotoxins using a novel source of ozone. , 1997, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[43]  D. L. Colvin,et al.  Influence of Broadleaf Weeds on Chlorothalonil Deposition, Foliar Disease Incidence, and Peanut (Arachis hypogaea) Yield , 1997, Weed Technology.

[44]  S. N. Nigam,et al.  Natural outcrossing in groundnut and its implications in groundnut breeding , 1993 .

[45]  L. D. Ploper,et al.  Potential for biological control of early leafspot of peanut using Bacillus cereus and chitin as foliar amendments , 1992 .

[46]  A. J. Chiyembekeza,et al.  Possible Reproductive Factors Contributing to Outcrossing in Peanut (Arachis hypogaea L.)1 , 1992 .

[47]  D. Smith,et al.  Early and Late Leaf Spots of Groundnut , 1985 .

[48]  J. Smartt Genetic Instability and Outcrossing in the Groundnut Variety Mani Pintar , 1960, Nature.