Coherent controlization using superconducting qubits

Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect.

[1]  V. Vedral,et al.  Quantum Computing with black-box Subroutines , 2013, 1310.2927.

[2]  T. Ralph,et al.  Adding control to arbitrary unknown quantum operations , 2010, Nature communications.

[3]  Hans-J. Briegel,et al.  Projective simulation with generalization , 2015, Scientific Reports.

[4]  S M Girvin,et al.  Stabilizer quantum error correction toolbox for superconducting qubits. , 2013, Physical review letters.

[5]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[6]  P Bertet,et al.  Characterization of a two-transmon processor with individual single-shot qubit readout. , 2012, Physical review letters.

[7]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[8]  Vedran Dunjko,et al.  Quantum speedup for active learning agents , 2014, 1401.4997.

[9]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[10]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[11]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[12]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[13]  Jay M. Gambetta,et al.  Josephson-junction-embedded transmission-line resonators: From Kerr medium to in-line transmon , 2012, 1204.2237.

[14]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[15]  Nicolai Friis,et al.  Quantum-enhanced deliberation of learning agents using trapped ions , 2014, 1407.2830.

[16]  Daniel A. Lidar,et al.  Adiabatic quantum algorithm for search engine ranking. , 2011, Physical review letters.

[17]  D. Wineland Nobel Lecture: Superposition, entanglement, and raising Schrödinger's cat , 2013 .

[18]  K. B. Whaley,et al.  Supplementary Information for " Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits " , 2014 .

[19]  Serge Haroche,et al.  Controlling photons in a box and exploring the quantum to classical boundary , 2013, Angewandte Chemie.

[20]  A. Varon,et al.  A trapped-ion-based quantum byte with 10−5 next-neighbour cross-talk , 2014, Nature Communications.

[21]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[22]  R. Schoelkopf,et al.  Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity , 2012, 1205.2401.

[23]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[24]  X-Q Zhou,et al.  Experimental realization of Shor's quantum factoring algorithm using qubit recycling , 2011, Nature Photonics.

[25]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[26]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[27]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[28]  Yu. A. Pashkin,et al.  Single artificial-atom lasing , 2007, Nature.

[29]  V. Dunjko,et al.  Implementing quantum control for unknown subroutines , 2014, 1401.8128.

[30]  Hans-J. Briegel,et al.  Projective simulation applied to the grid-world and the mountain-car problem , 2014, Artif. Intell. Res..

[31]  C. Caves,et al.  Quantum-circuit guide to optical and atomic interferometry , 2009, 0909.0803.

[32]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[33]  H. J. Briegel,et al.  Adaptive quantum computation in changing environments using projective simulation , 2014, Scientific Reports.

[34]  J. Martinis,et al.  Superconducting Qubits: A Short Review , 2004, cond-mat/0411174.

[35]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[36]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[37]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[38]  David J. Wineland,et al.  Superposition, entanglement, and raising Schrödinger's cat , 2013 .

[39]  Experimental Tomographic State Reconstruction of Itinerant Microwave Photons , 2010, 1011.6668.

[40]  S. Haroche Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary , 2013 .

[41]  O. Astafiev,et al.  Resonance Fluorescence of a Single Artificial Atom , 2010, Science.

[42]  Barry C. Sanders,et al.  Photon-Mediated Interactions Between Distant Artificial Atoms , 2013, Science.

[43]  Luigi Frunzio,et al.  Black-box superconducting circuit quantization. , 2012, Physical review letters.

[44]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[45]  S. Girvin,et al.  Observation of quantum state collapse and revival due to the single-photon Kerr effect , 2012, Nature.

[46]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[47]  J. E. Mooij,et al.  Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits , 2007, Nature.

[48]  S. Girvin,et al.  Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States , 2013, Science.

[49]  J. Fink,et al.  Experimental state tomography of itinerant single microwave photons. , 2011, Physical review letters.

[50]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[51]  L. DiCarlo,et al.  Deterministic entanglement of superconducting qubits by parity measurement and feedback , 2013, Nature.

[52]  Hans J. Briegel,et al.  Projective simulation for artificial intelligence , 2011, Scientific Reports.

[53]  Miguel-Angel Martin-Delgado,et al.  Google in a Quantum Network , 2011, Scientific Reports.

[54]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[55]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[56]  R. Feynman Simulating physics with computers , 1999 .

[57]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[58]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[59]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[60]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[61]  Liang Jiang,et al.  Cavity State Manipulation Using Photon-Number Selective Phase Gates. , 2015, Physical review letters.

[62]  vCaslav Brukner,et al.  Quantum circuits cannot control unknown operations , 2013, 1309.7976.

[63]  Mazyar Mirrahimi,et al.  Hardware-efficient autonomous quantum memory protection. , 2012, Physical review letters.