Covariance Matrix Estimation from Correlated Samples

Covariance matrix estimation concerns the problem of estimating the covariance matrix from a collection of samples, which is of extreme importance in many applications. Classical results have shown that $O(n)$ samples are sufficient to accurately estimate the covariance matrix from $n$-dimensional independent Gaussian samples. However, in many practical applications, the received signal samples might be correlated, which makes the classical analysis inapplicable. In this paper, we develop a non-asymptotic analysis for the covariance matrix estimation from correlated Gaussian samples. Our theoretical results show that the error bounds are determined by the signal dimension $n$, the sample size $m$, and the shape parameter of the distribution of the correlated sample covariance matrix. Particularly, when the shape parameter is a class of Toeplitz matrices (which is of great practical interest), $O(n)$ samples are also sufficient to faithfully estimate the covariance matrix from correlated samples. Simulations are provided to verify the correctness of the theoretical results.

[1]  Xiaojing Huang,et al.  Detection of Temporally Correlated Signals over Multipath Fading Channels , 2013, IEEE Transactions on Wireless Communications.

[2]  Björn E. Ottersten,et al.  Multiple invariance ESPRIT , 1992, IEEE Trans. Signal Process..

[3]  R. Vershynin How Close is the Sample Covariance Matrix to the Actual Covariance Matrix? , 2010, 1004.3484.

[4]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[5]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons , 1990, IEEE Trans. Acoust. Speech Signal Process..

[6]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  Angelo Coluccia Regularized Covariance Matrix Estimation via Empirical Bayes , 2015, IEEE Signal Processing Letters.

[8]  Chen-Nee Chuah,et al.  Capacity scaling in MIMO Wireless systems under correlated fading , 2002, IEEE Trans. Inf. Theory.

[9]  R. Vershynin,et al.  Partial estimation of covariance matrices , 2010, 1008.1716.

[10]  The Elements of Financial Econometrics , 2015 .

[11]  V. Koltchinskii,et al.  Concentration inequalities and moment bounds for sample covariance operators , 2014, 1405.2468.

[12]  Joseph M. Kahn,et al.  Fading correlation and its effect on the capacity of multielement antenna systems , 2000, IEEE Trans. Commun..

[13]  Guillaume Aubrun Sampling convex bodies: a random matrix approach , 2007 .

[14]  Yide Wang,et al.  Modified ESPRIT (M-ESPRIT) algorithm for time delay estimation in both any noise and any radar pulse context by a GPR radar , 2010, Signal Process..

[15]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[16]  K. M. Buckley,et al.  Statistical performance comparison of MUSIC in element-space and beam-space , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[17]  R. Vershynin,et al.  Covariance estimation for distributions with 2+ε moments , 2011, 1106.2775.

[18]  I. Soloveychik Error Bound for Compound Wishart Matrices , 2014, 1402.5581.

[19]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[20]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[21]  Alfred O. Hero,et al.  Shrinkage Algorithms for MMSE Covariance Estimation , 2009, IEEE Transactions on Signal Processing.

[22]  Jianqing Fan,et al.  High-Dimensional Statistics , 2014 .

[23]  T. W. Epps Comovements in Stock Prices in the Very Short Run , 1979 .

[24]  Harrison H. Zhou,et al.  Optimal rates of convergence for estimating Toeplitz covariance matrices , 2013 .

[25]  C. Stein Approximate computation of expectations , 1986 .

[26]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[27]  J. Tropp,et al.  Efron–Stein inequalities for random matrices , 2014, 1408.3470.

[28]  Compound Real Wishart and q-Wishart Matrices , 2008, 0806.4014.

[29]  Harrison H. Zhou,et al.  MINIMAX ESTIMATION OF LARGE COVARIANCE MATRICES UNDER ℓ1-NORM , 2012 .

[30]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[31]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[32]  B. Carlson Covariance matrix estimation errors and diagonal loading in adaptive arrays , 1988 .

[33]  Roland Speicher,et al.  Combinatorial Theory of the Free Product With Amalgamation and Operator-Valued Free Probability Theory , 1998 .

[34]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[35]  C. Stein A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .

[36]  C. Stein Lectures on the theory of estimation of many parameters , 1986 .

[37]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[38]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[39]  Jianqing Fan,et al.  An Overview of the Estimation of Large Covariance and Precision Matrices , 2015, The Econometrics Journal.

[40]  Yong Liu,et al.  Training Signal Design for Estimation of Correlated MIMO Channels With Colored Interference , 2007, IEEE Transactions on Signal Processing.

[41]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[42]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[43]  Jerzy Jurkiewicz,et al.  Applying free random variables to random matrix analysis of financial data. Part I: The Gaussian case , 2006 .

[44]  R. Kumaresan,et al.  Estimating the Angles of Arrival of Multiple Plane Waves , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[45]  S. DeGraaf,et al.  Improving the resolution of bearing in passive sonar arrays by eigenvalue analysis , 1981 .

[46]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[47]  Noureddine El Karoui Spectrum estimation for large dimensional covariance matrices using random matrix theory , 2006, math/0609418.

[48]  Louis L. Scharf,et al.  Detection of Spatially Correlated Gaussian Time Series , 2010, IEEE Transactions on Signal Processing.

[49]  D. R. Farrier Direction of arrival estimation by subspace methods , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[50]  Feifei Gao,et al.  A generalized ESPRIT approach to direction-of-arrival estimation , 2005, IEEE Signal Processing Letters.

[51]  Moeness G. Amin,et al.  Time-frequency MUSIC , 1999, IEEE Signal Processing Letters.

[52]  Harrison H. Zhou,et al.  Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation , 2016 .

[53]  Roman Vershynin,et al.  High-Dimensional Probability , 2018 .

[54]  T. Durrani,et al.  A comparative study of modern eigenstructure methods for bearing estimation-A new high performance approach , 1986, 1986 25th IEEE Conference on Decision and Control.

[55]  B. Collins,et al.  Compound Wishart Matrices and Noisy Covariance Matrices: Risk Underestimation , 2013, 1306.5510.

[56]  Thomas Guhr,et al.  Impact of the tick-size on financial returns and correlations , 2010, 1001.5124.

[57]  R. Adamczak,et al.  Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.

[58]  Tapan K. Sarkar,et al.  On SVD for estimating generalized eigenvalues of singular matrix pencil in noise , 1991, IEEE Trans. Signal Process..

[59]  R. Adamczak,et al.  Sharp bounds on the rate of convergence of the empirical covariance matrix , 2010, 1012.0294.

[60]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .