Vapor-phase atomic-controllable growth of amorphous Li2S for high-performance lithium-sulfur batteries.

Lithium-sulfur (Li-S) batteries hold great promise to meet the formidable energy storage requirements of future electrical vehicles but are prohibited from practical implementation by their severe capacity fading and the risks imposed by Li metal anodes. Nanoscale Li(2)S offers the possibility to overcome these challenges, but no synthetic technique exists for fine-tailoring Li(2)S at the nanoscale. Herein we report a vapor-phase atomic layer deposition (ALD) method for the atomic-scale-controllable synthesis of Li(2)S. Besides a comprehensive investigation of the ALD Li(2)S growth mechanism, we further describe the high performance of the resulting amorphous Li(2)S nanofilms as cathodes in Li-S batteries, achieving a stable capacity of ∼ 800 mA · h/g, nearly 100% Coulombic efficiency, and excellent rate capability. Nanoscale Li(2)S holds great potential for both bulk-type and thin-film high-energy Li-S batteries.

[1]  Yang Ren,et al.  Gallium Sulfide–Single‐Walled Carbon Nanotube Composites: High‐Performance Anodes for Lithium‐Ion Batteries , 2014 .

[2]  Chunsheng Wang,et al.  Copper‐Stabilized Sulfur‐Microporous Carbon Cathodes for Li–S Batteries , 2014 .

[3]  J. Cabana,et al.  X-ray Absorption Spectra of Dissolved Polysulfides in Lithium-Sulfur Batteries from First-Principles. , 2014, The journal of physical chemistry letters.

[4]  L. Stievano,et al.  X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  Feixiang Wu,et al.  Nanoporous Li2S and MWCNT-linked Li2S powder cathodes for lithium-sulfur and lithium-ion battery chemistries , 2014 .

[6]  Hong-qi Ye,et al.  Li2S-reduced graphene oxide nanocomposites as cathode material for lithium sulfur batteries , 2014 .

[7]  P. Adelhelm,et al.  Copper sulfides for rechargeable lithium batteries: Linking cycling stability to electrolyte composition , 2014 .

[8]  Xiangbo Meng,et al.  Atomic Layer Deposition of Gallium Sulfide Films Using Hexakis(dimethylamido)digallium and Hydrogen Sulfide , 2014 .

[9]  Kai Xie,et al.  Shuttle phenomenon – The irreversible oxidation mechanism of sulfur active material in Li–S battery , 2013 .

[10]  M. Winter,et al.  Carbon coated lithium sulfide particles for lithium battery cathodes , 2013 .

[11]  Shengbo Zhang,et al.  Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions , 2013 .

[12]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[13]  L. Nazar,et al.  New approaches for high energy density lithium-sulfur battery cathodes. , 2013, Accounts of chemical research.

[14]  Shengbo Zhang New insight into liquid electrolyte of rechargeable lithium/sulfur battery , 2013 .

[15]  Guangyuan Zheng,et al.  Nanostructured sulfur cathodes. , 2013, Chemical Society reviews.

[16]  A. Hayashi,et al.  Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries , 2013 .

[17]  C. Liang,et al.  Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. , 2013, ACS nano.

[18]  Jun Liu,et al.  Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid , 2013 .

[19]  Yourong Wang,et al.  Effects of Current Collectors on Electrochemical Performance of FeS2 for Li-ion Battery , 2013, International Journal of Electrochemical Science.

[20]  L. Archer,et al.  In situ synthesis of lithium sulfide–carbon composites as cathode materials for rechargeable lithium batteries , 2013 .

[21]  Phillip K. Koech,et al.  Controlled Nucleation and Growth Process of Li2S2/Li2S in Lithium-Sulfur Batteries , 2013 .

[22]  E. Cairns,et al.  Nanostructured Li₂S-C composites as cathode material for high-energy lithium/sulfur batteries. , 2012, Nano letters.

[23]  Peng Chen,et al.  In situ preparation of CuS cathode with unique stability and high rate performance for lithium ion batteries , 2012 .

[24]  Yi Cui,et al.  High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. , 2012, Journal of the American Chemical Society.

[25]  Xuelin Yang,et al.  Fabrication of Cu2S on Cu film electrode and its application in lithium ion battery , 2012 .

[26]  Xiao‐Qing Yang,et al.  Emerging Applications of Atomic Layer Deposition for Lithium‐Ion Battery Studies , 2012, Advanced materials.

[27]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[28]  A. Hayashi,et al.  Invited paper: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes , 2012, Electronic Materials Letters.

[29]  A. Hayashi,et al.  High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries , 2012 .

[30]  Nicola Pinna,et al.  Atomic Layer Deposition of Nanostructured Materials for Energy and Environmental Applications , 2012, Advanced materials.

[31]  Jean-Marie Tarascon,et al.  Erratum: Li–O 2 and Li–S batteries with high energy storage , 2012 .

[32]  J. Elam,et al.  Indium Oxide ALD Using Cyclopentadienyl Indium and Mixtures of H2O and O2 , 2011 .

[33]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[34]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[35]  R. Li,et al.  Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition , 2011, Nanotechnology.

[36]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[37]  Bruno Scrosati,et al.  Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery , 2011 .

[38]  Jinghua Guo,et al.  Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. , 2011, Journal of the American Chemical Society.

[39]  Hiroshi Senoh,et al.  All-Solid-State Lithium Secondary Battery with Li2S – C Composite Positive Electrode Prepared by Spark-Plasma-Sintering Process , 2010 .

[40]  Electrolyte additive to improve performance of MCMB/LiNi1/3Co1/3Mn1/3O2 Li-ion cell , 2010 .

[41]  S. George,et al.  Atomic Layer Deposition of LiOH and Li2CO3 Using Lithium t-Butoxide as the Lithium Source , 2010 .

[42]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[43]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[44]  B. J. Miller,et al.  SH-stretching vibrational spectra of ethanethiol and tert-butylthiol. , 2009, The journal of physical chemistry. A.

[45]  Steven M. George,et al.  SiO2 Atomic Layer Deposition Using Tris(dimethylamino)silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy , 2009 .

[46]  A. Hayashi,et al.  Electrochemical performance of all-solid-state lithium batteries with mechanochemically activated Li2S–Cu composite electrodes , 2008 .

[47]  A. Hayashi,et al.  All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material , 2008 .

[48]  Z. Fu,et al.  Electrochemical reactivity of Co-Li2S nanocomposite for lithium-ion batteries , 2007 .

[49]  J. Elam,et al.  GaPO4 sensors for gravimetric monitoring during atomic layer deposition at high temperatures. , 2005, Analytical chemistry.

[50]  Steven M. George,et al.  Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition , 2002 .

[51]  Alan W. Weimer,et al.  Atomic layer deposition of ultrathin and conformal Al2O3 films on BN particles , 2000 .

[52]  E. Zhecheva,et al.  Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells , 2000 .

[53]  Robert A. Meyers,et al.  Encyclopedia of analytical chemistry : applications, theory and instrumentation , 2000 .

[54]  Ravi Gupta,et al.  Superionic Solids: Composite Electrolyte Phase —An Overview , 1999 .

[55]  S. George,et al.  ZrO2 film growth by chemical vapor deposition using zirconium tetra-tert-butoxide , 1999 .

[56]  R. Agrawal,et al.  Superionic solid: composite electrolyte phase – an overview , 1999 .

[57]  Y. Korai,et al.  Stabilization and carbonization properties of mesocarbon microbeads (MCMB) prepared from a synthetic naphthalene isotropic pitch , 1999 .

[58]  H. Hagemann,et al.  Experimental Raman scattering investigation of phonon anharmonicity effects in , 1998 .

[59]  J. Yates,et al.  Transmission infrared spectroscopy of high area solid surfaces. A useful method for sample preparation , 1992 .

[60]  G. Eichinger,et al.  Copper based electrodes in organic electrolyte solutions—III. The discharge mechanism of copper(II) sulphide in some organic solvents , 1975 .