Frequency-Domain Numerical Modelling of Visco-Acoustic Waves Based on Finite-Difference and Finite-Element Discontinuous Galerkin Methods

Seismic exploration is one of the main geophysical methods to extract quantitative inferences about the Earth’s interior at different scales from the recording of seismic waves near the surface. Main applications are civil engineering for cavity detection and landslide characterization, site effect modelling for seismic hazard, CO2 sequestration and nuclearwaste storage, oil and gas exploration, and fundamental understanding of geodynamical processes. Acoustic or elastic waves are emitted either by controlled sources or natural sources (i.e., earthquakes). Interactions of seismic waves with the heterogeneities of the subsurface provide indirect measurements of the physical properties of the subsurface which govern the propagation of elastic waves (compressional and shear wave speeds, density, attenuation, anisotropy). Quantitative inference of the physical properties of the subsurface from the recordings of seismic waves at receiver positions is the so-called seismic inverse problem that can be recast in the framework of local numerical optimization. The most complete seismic inversion method, the so-called full waveform inversion (Virieux & Operto (2009) for a review), aims to exploit the full information content of seismic data by minimization of the misfit between the full seismic wavefield and the modelled one. The theoretical resolution of full waveform inversion is half the propagated wavelength. In full waveform inversion, the full seismic wavefield is generally modelled with volumetric methods that rely on the discretization of the wave equation (finite difference, finite element, finite volume methods). In the regime of small deformations associated with seismic wave propagation, the subsurface can be represented by a linear elastic solid parameterized by twenty-one elastic constants and the density in the framework of the constitutive Hooke’s law. If the subsurface is assumed isotropic, the elastic constants reduce to two independent parameters, the Lame parameters, which depend on the compressional (P) and the shear (S) wave speeds. In marine environment, the P wave speed has most of the time a dominant footprint in the seismic wavefield, in particular, on the hydrophone component which records the pressure wavefield. The dominant footprint of the P wave speed on the seismic

[1]  Robert J. Geller,et al.  Optimally accurate second order time-domain finite difference scheme for computing synthetic seismograms in 2-D and 3-D media , 2000 .

[2]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[3]  Ronan Perrussel,et al.  Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods , 2006, math/0610508.

[4]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[5]  Azzam Haidar,et al.  Seismic wave modeling for seismic imaging , 2009 .

[6]  Cornelis Vuik,et al.  A new iterative solver for the time-harmonic wave equation , 2006 .

[7]  Olav Holberg,et al.  Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena , 1985 .

[8]  Gerard T. Schuster,et al.  Parsimonious staggered grid finite‐differencing of the wave equation , 1990 .

[9]  Graham. J. Hicks,et al.  Arbitrary source and receiver positioning in finite‐difference schemes using Kaiser windowed sinc functions , 2002 .

[10]  M. Remaki A new finite volume scheme for solving Maxwell’s system , 2000 .

[11]  Stéphane Lanteri,et al.  A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods , 2008, J. Comput. Phys..

[12]  Ezio Faccioli,et al.  2d and 3D elastic wave propagation by a pseudo-spectral domain decomposition method , 1997 .

[13]  Jean Virieux,et al.  Dynamic non-planar crack rupture by a finite volume method , 2006 .

[14]  Arben Pitarka,et al.  3D Elastic Finite-Difference Modeling of Seismic Motion Using Staggered Grids with Nonuniform Spacing , 1999 .

[15]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[16]  Olav Holberg,et al.  COMPUTATIONAL ASPECTS OF THE CHOICE OF OPERATOR AND SAMPLING INTERVAL FOR NUMERICAL DIFFERENTIATION IN LARGE-SCALE SIMULATION OF WAVE PHENOMENA* , 1987 .

[17]  J. Kristek,et al.  3D Heterogeneous Staggered-grid Finite-difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities , 2002 .

[18]  Joseph W. H. Liu,et al.  The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..

[19]  A 3D Parsimonious Finite-volume Frequency- domain Method for Elastic Wave Modelling , 2008 .

[20]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[21]  Jack Dongarra,et al.  Implementation of the Mixed-Precision High Performance LINPACK Benchmark on the CELL Processor , 2006 .

[22]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[23]  Michael B. Porter,et al.  Computational Ocean Acoustics , 1994 .

[24]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case , 2006 .

[25]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[26]  René-Édouard Plessix,et al.  A Helmholtz iterative solver for 3D seismic-imaging problems , 2007 .

[27]  Jean-Pierre Vilotte,et al.  Spectral Element Analysis in Seismology , 2007 .

[28]  S. Operto,et al.  Which data residual norm for robust elastic frequency-domain full waveform inversion? , 2010 .

[29]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[30]  H. Kolsky,et al.  LXXI. The propagation of stress pulses in viscoelastic solids , 1956 .

[31]  S. Shapiro,et al.  Modeling the propagation of elastic waves using a modified finite-difference grid , 2000 .

[32]  Cornelis Vuik,et al.  A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation , 2007, J. Comput. Phys..

[33]  Azzam Haidar,et al.  Frequency-domain Full-waveform Modeling Using a Hybrid Direct-iterative Solver Based On a Parallel Domain Decomposition Method: a Tool For 3D Full-waveform Inversion? , 2008 .

[34]  Jean Virieux,et al.  Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves , 2007, 0706.3825.

[35]  Jean Virieux,et al.  3-D dynamic rupture simulations by a finite volume method , 2009 .

[36]  Jean Virieux,et al.  Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data , 2008 .

[37]  C. Pelties,et al.  DYNAMIC RUPTURE MODELLING ON UNSTRUCTURED MESHES USING A DISCONTINUOUS GALERKIN METHOD , 2011 .

[38]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[39]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[40]  S. Operto,et al.  Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling , 2004 .

[41]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[42]  L. Sirgue,et al.  3D Frequency Domain Waveform Inversion Using Time Domain Finite Difference Methods , 2008 .

[43]  Joël Piraux,et al.  Numerical treatment of two-dimensional interfaces for acoustic and elastic waves , 2004 .

[44]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[45]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[46]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[47]  Reinhard Nabben,et al.  Multilevel Projection-Based Nested Krylov Iteration for Boundary Value Problems , 2008, SIAM J. Sci. Comput..

[48]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[49]  Romain Brossier,et al.  Parsimonious finite-volume frequency-domain method for 2-D P–SV-wave modelling , 2008 .

[50]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[51]  Walter I. Futterman,et al.  Dispersive body waves , 1962 .

[52]  A. Giannopoulos,et al.  A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves , 2007 .

[53]  Romain Brossier Imagerie sismique à deux dimensions des milieux visco-élastiques par inversion des formes d'ondes : développements méthodologiques et applications , 2009 .

[54]  Gianluca Iaccarino,et al.  Stable Boundary Treatment for the Wave Equation on Second-Order Form , 2009, J. Sci. Comput..

[55]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[56]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[57]  Jean Virieux,et al.  A Massively Parallel Time-domain Discontinuous Galerkin Method For 3D Elastic Wave Modeling , 2009 .

[58]  D. Boore,et al.  Finite Difference Methods for Seismic Wave Propagation in Heterogeneous Materials , 1972 .

[59]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[60]  I. Štekl,et al.  Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .

[61]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[62]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[63]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[64]  Géza Seriani,et al.  Numerical simulation of interface waves by high‐order spectral modeling techniques , 1992 .

[65]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[66]  Martin Käser,et al.  Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method , 2009 .

[67]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[68]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[69]  S. Operto,et al.  3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .

[70]  Azzam Haidar,et al.  On the parallel scalability of hybrid linear solvers for large 3D problems. (Sur l'extensibilité parallèle de solveurs linéaires hybrides pour des problèmes tridimensionels de grandes tailles) , 2008 .

[71]  M. A. Dablain,et al.  The application of high-order differencing to the scalar wave equation , 1986 .

[72]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[73]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[74]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[75]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[76]  Gil Utard,et al.  Impact of reordering on the memory of a multifrontal solver , 2003, Parallel Comput..