Frequency-Domain Numerical Modelling of Visco-Acoustic Waves Based on Finite-Difference and Finite-Element Discontinuous Galerkin Methods
暂无分享,去创建一个
Jean Virieux | Stéphane Operto | V. Etienne | R. Brossier | S. Operto | J. Virieux | R. Brossier | V. Etienne
[1] Robert J. Geller,et al. Optimally accurate second order time-domain finite difference scheme for computing synthetic seismograms in 2-D and 3-D media , 2000 .
[2] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[3] Ronan Perrussel,et al. Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods , 2006, math/0610508.
[4] C. Shin,et al. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .
[5] Azzam Haidar,et al. Seismic wave modeling for seismic imaging , 2009 .
[6] Cornelis Vuik,et al. A new iterative solver for the time-harmonic wave equation , 2006 .
[7] Olav Holberg,et al. Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena , 1985 .
[8] Gerard T. Schuster,et al. Parsimonious staggered grid finite‐differencing of the wave equation , 1990 .
[9] Graham. J. Hicks,et al. Arbitrary source and receiver positioning in finite‐difference schemes using Kaiser windowed sinc functions , 2002 .
[10] M. Remaki. A new finite volume scheme for solving Maxwell’s system , 2000 .
[11] Stéphane Lanteri,et al. A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods , 2008, J. Comput. Phys..
[12] Ezio Faccioli,et al. 2d and 3D elastic wave propagation by a pseudo-spectral domain decomposition method , 1997 .
[13] Jean Virieux,et al. Dynamic non-planar crack rupture by a finite volume method , 2006 .
[14] Arben Pitarka,et al. 3D Elastic Finite-Difference Modeling of Seismic Motion Using Staggered Grids with Nonuniform Spacing , 1999 .
[15] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[16] Olav Holberg,et al. COMPUTATIONAL ASPECTS OF THE CHOICE OF OPERATOR AND SAMPLING INTERVAL FOR NUMERICAL DIFFERENTIATION IN LARGE-SCALE SIMULATION OF WAVE PHENOMENA* , 1987 .
[17] J. Kristek,et al. 3D Heterogeneous Staggered-grid Finite-difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities , 2002 .
[18] Joseph W. H. Liu,et al. The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..
[19] A 3D Parsimonious Finite-volume Frequency- domain Method for Elastic Wave Modelling , 2008 .
[20] Stephen D. Gedney,et al. Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .
[21] Jack Dongarra,et al. Implementation of the Mixed-Precision High Performance LINPACK Benchmark on the CELL Processor , 2006 .
[22] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[23] Michael B. Porter,et al. Computational Ocean Acoustics , 1994 .
[24] M. Dumbser,et al. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case , 2006 .
[25] K. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .
[26] René-Édouard Plessix,et al. A Helmholtz iterative solver for 3D seismic-imaging problems , 2007 .
[27] Jean-Pierre Vilotte,et al. Spectral Element Analysis in Seismology , 2007 .
[28] S. Operto,et al. Which data residual norm for robust elastic frequency-domain full waveform inversion? , 2010 .
[29] Raj Mittra,et al. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .
[30] H. Kolsky,et al. LXXI. The propagation of stress pulses in viscoelastic solids , 1956 .
[31] S. Shapiro,et al. Modeling the propagation of elastic waves using a modified finite-difference grid , 2000 .
[32] Cornelis Vuik,et al. A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation , 2007, J. Comput. Phys..
[33] Azzam Haidar,et al. Frequency-domain Full-waveform Modeling Using a Hybrid Direct-iterative Solver Based On a Parallel Domain Decomposition Method: a Tool For 3D Full-waveform Inversion? , 2008 .
[34] Jean Virieux,et al. Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves , 2007, 0706.3825.
[35] Jean Virieux,et al. 3-D dynamic rupture simulations by a finite volume method , 2009 .
[36] Jean Virieux,et al. Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data , 2008 .
[37] C. Pelties,et al. DYNAMIC RUPTURE MODELLING ON UNSTRUCTURED MESHES USING A DISCONTINUOUS GALERKIN METHOD , 2011 .
[38] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[39] C. Tsogka,et al. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .
[40] S. Operto,et al. Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling , 2004 .
[41] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[42] L. Sirgue,et al. 3D Frequency Domain Waveform Inversion Using Time Domain Finite Difference Methods , 2008 .
[43] Joël Piraux,et al. Numerical treatment of two-dimensional interfaces for acoustic and elastic waves , 2004 .
[44] K. Marfurt. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .
[45] D. Komatitsch,et al. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .
[46] J. Virieux. P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .
[47] Reinhard Nabben,et al. Multilevel Projection-Based Nested Krylov Iteration for Boundary Value Problems , 2008, SIAM J. Sci. Comput..
[48] Weng Cho Chew,et al. A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .
[49] Romain Brossier,et al. Parsimonious finite-volume frequency-domain method for 2-D P–SV-wave modelling , 2008 .
[50] Patrick Amestoy,et al. Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..
[51] Walter I. Futterman,et al. Dispersive body waves , 1962 .
[52] A. Giannopoulos,et al. A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves , 2007 .
[53] Romain Brossier. Imagerie sismique à deux dimensions des milieux visco-élastiques par inversion des formes d'ondes : développements méthodologiques et applications , 2009 .
[54] Gianluca Iaccarino,et al. Stable Boundary Treatment for the Wave Equation on Second-Order Form , 2009, J. Sci. Comput..
[55] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[56] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[57] Jean Virieux,et al. A Massively Parallel Time-domain Discontinuous Galerkin Method For 3D Elastic Wave Modeling , 2009 .
[58] D. Boore,et al. Finite Difference Methods for Seismic Wave Propagation in Heterogeneous Materials , 1972 .
[59] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[60] I. Štekl,et al. Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .
[61] J. Gillis,et al. Methods in Computational Physics , 1964 .
[62] Jean Virieux,et al. An overview of full-waveform inversion in exploration geophysics , 2009 .
[63] P. Monk,et al. Optimizing the Perfectly Matched Layer , 1998 .
[64] Géza Seriani,et al. Numerical simulation of interface waves by high‐order spectral modeling techniques , 1992 .
[65] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[66] Martin Käser,et al. Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method , 2009 .
[67] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[68] Mrinal K. Sen,et al. Global Optimization Methods in Geophysical Inversion , 1995 .
[69] S. Operto,et al. 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .
[70] Azzam Haidar,et al. On the parallel scalability of hybrid linear solvers for large 3D problems. (Sur l'extensibilité parallèle de solveurs linéaires hybrides pour des problèmes tridimensionels de grandes tailles) , 2008 .
[71] M. A. Dablain,et al. The application of high-order differencing to the scalar wave equation , 1986 .
[72] A. Peirce. Computer Methods in Applied Mechanics and Engineering , 2010 .
[73] D. Komatitsch,et al. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.
[74] John K. Reid,et al. The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.
[75] Géza Seriani,et al. Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .
[76] Gil Utard,et al. Impact of reordering on the memory of a multifrontal solver , 2003, Parallel Comput..