Challenges in stochastic programming

Remarkable progress has been made in the development of algorithmic procedures and the availability of software for stochastic programming problems. However, some fundamental questions have remained unexplored. This paper identifies the more challenging open questions in the field of stochastic programming. Some are purely technical in nature, but many also go to the foundations of designing models for decision making under uncertainty.

[1]  Alan J. King,et al.  A Standard Input Format for Multiperiod Stochastic Linear Programs , 1987 .

[2]  William T. Ziemba,et al.  Bounds for Two-Stage Stochastic Programs with Fixed Recourse , 1994, Math. Oper. Res..

[3]  Georg Ch. Pflug,et al.  Asymptotic Stochastic Programs , 1995, Math. Oper. Res..

[4]  Georg Ch. Pflug Asymptotic Dominance and Confidence for Solutions of Stochastic Programs , 1991 .

[5]  Pravin Varaiya,et al.  Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .

[6]  K. Jim Radford,et al.  Stochastic Optimization Models in Finance , 1976 .

[7]  Y. Ermoliev,et al.  The Minimization of Semicontinuous Functions: Mollifier Subgradients , 1995 .

[8]  Alan J. King,et al.  Asymmetric risk measures and tracking models for portfolio optimization under uncertainty , 1993, Ann. Oper. Res..

[9]  J. Dupacová,et al.  ASYMPTOTIC BEHAVIOR OF STATISTICAL ESTIMATORS AND OF OPTIMAL SOLUTIONS OF STOCHASTIC OPTIMIZATION PROBLEMS , 1988 .

[10]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[11]  R. Wets,et al.  Epi‐consistency of convex stochastic programs , 1991 .

[12]  KaratzasIoannis,et al.  Optimal portfolio and consumption decisions for a small investor on a finite horizon , 1987 .

[13]  Roger J.-B. Wets,et al.  Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems , 1995, Ann. Oper. Res..

[14]  Alexander Shapiro,et al.  Quantitative stability in stochastic programming , 1994, Math. Program..

[15]  Tyrone E. Duncan,et al.  Numerical Methods for Stochastic Control Problems in Continuous Time (Harold J. Kushner and Paul G. Dupuis) , 1994, SIAM Rev..

[16]  András Prékopa,et al.  ON THE PROBABILITY DISTRIBUTION OF THE OPTIMUM OF A RANDOM LINEAR PROGRAM , 1966 .

[17]  Peter Kall,et al.  Stochastic programs with recourse: An upper bound and the related moment problem , 1987, Z. Oper. Research.

[18]  Kerry Back,et al.  The shadow price of information in continuous time decision problems , 1987 .

[19]  Alan J. King,et al.  Generalized Delta Theorems for Multivalued Mappings and Measurable Selections , 1989, Math. Oper. Res..

[20]  Riho Lepp Approximations to stochastic programs with complete recourse , 1990 .

[21]  Alexei A. Gaivoronski,et al.  Stochastic optimization techniques for finding optimal submeasures , 1986 .

[22]  Roger J.-B. Wets,et al.  Stochastic Optimization Models for Lake Eutrophication Management , 1988, Oper. Res..

[23]  J. Birge,et al.  A separable piecewise linear upper bound for stochastic linear programs , 1988 .

[24]  P. Varaiya,et al.  Stochastic Dynamic Optimization Approaches and Computation , 1988 .

[25]  Zvi Artstein,et al.  Sensors and Information in Optimization Under Stochastic Uncertainty , 1993, Math. Oper. Res..

[26]  J. Quadrat Numerical methods for stochastic control problems in continuous time , 1994 .

[27]  Alexander Shapiro,et al.  Asymptotic analysis of stochastic programs , 1991, Ann. Oper. Res..

[28]  R. Tyrrell Rockafellar,et al.  Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Programming , 1993, Math. Oper. Res..

[29]  Tamás Szántai,et al.  Stochastic programming in water management: A case study and a comparison of solution techniques , 1991 .

[30]  Werner Römisch,et al.  Lipschitz Stability for Stochastic Programs with Complete Recourse , 1996, SIAM J. Optim..

[31]  Karl Frauendorfer,et al.  Stochastic Two-Stage Programming , 1992 .

[32]  Suresh P. Sethi,et al.  Explicit Solution of a General Consumption/Investment Problem , 1986, Math. Oper. Res..

[33]  Zvi Artstein,et al.  Stability Results for Stochastic Programs and Sensors, Allowing for Discontinuous Objective Functions , 1994, SIAM J. Optim..

[34]  P. Samuelson The Fundamental Approximation Theorem of Portfolio Analysis in terms of Means, Variances and Higher Moments , 1970 .

[35]  D. Pollard Convergence of stochastic processes , 1984 .

[36]  W. Ziemba Choosing investment portfolios when the returns have stable distributions , 1972 .

[37]  Leen Stougie Design and analysis of algorithms for stochastic integer programming , 1987 .

[38]  R. T. Rockafellart,et al.  Deterministic and stochastic optimization problems of bolza type in discrete time , 1983 .

[39]  Alexander Shapiro,et al.  Asymptotic Behavior of Optimal Solutions in Stochastic Programming , 1993, Math. Oper. Res..

[40]  Roger J.-B. Wets,et al.  Quantitative stability of variational systems: III.ε-approximate solutions , 1993, Math. Program..

[41]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .

[42]  Tamás Szántai,et al.  Stochastic Programming in Water Resources System Planning: A Case Study and a Comparison of Solution Techniques , 1986 .

[43]  Leen Stougie,et al.  On the convex hull of the simple integer recourse objective function , 1995, Ann. Oper. Res..

[44]  J. Dupacová Stability and sensitivity-analysis for stochastic programming , 1991 .

[45]  Werner Römisch,et al.  Stability analysis for stochastic programs , 1991, Ann. Oper. Res..