Electrical Transport Through Single-Wall Carbon Nanotubes

We present a brief review of the phenomenal progress in electrical transport measurements in individual and ropes of single-wall carbon nanotubes in the past few years. Nanotubes have been made into single-electron transistors, field-effect transistors, and rectifying diodes. A number of interesting mesoscopic transport phenomena have been observed. More significantly, nanotubes exhibit strong electron-electron correlation effects, or so-called Luttinger liquid behavior, associated with their one-dimensional nature.

[1]  D. Thouless,et al.  Maximum metallic resistance in thin wires , 1977 .

[2]  Shea,et al.  Electrical transport in rings of single-wall nanotubes: one-dimensional localization , 2000, Physical review letters.

[3]  Jerry Tersoff,et al.  Novel Length Scales in Nanotube Devices , 1999 .

[4]  D. Suh,et al.  Magnetoresistance of an entangled single-wall carbon-nanotube network , 1998 .

[5]  Lee,et al.  Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field. , 1987, Physical review. B, Condensed matter.

[6]  Marco Buongiorno Nardelli,et al.  Mechanical deformations and coherent transport in carbon nanotubes , 1999 .

[7]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[8]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[9]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[10]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[11]  J. Tersoff Contact resistance of carbon nanotubes , 1999 .

[12]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[13]  T. V. Ramakrishnan,et al.  Disordered electronic systems , 1985 .

[14]  G. Mahan,et al.  LOCALIZATION IN CARBON NANOTUBES WITHIN A TIGHT-BINDING MODEL , 1999 .

[15]  Effective Low-Energy Theory for Correlated Carbon Nanotubes , 1997, cond-mat/9708065.

[16]  L. Sohn,et al.  Mesoscopic electron transport , 1997 .

[17]  Correlated transport and non-Fermi-liquid behavior in single-wall carbon nanotubes , 1998, cond-mat/9803128.

[18]  Phaedon Avouris,et al.  Rings of single-walled carbon nanotubes , 1999, Nature.

[19]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[20]  P. L. McEuen,et al.  Electrical transport measurements on single-walled carbon nanotubes , 1999 .

[21]  Richard Martel,et al.  Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces , 1998 .

[22]  A. Shytov,et al.  Semiclassical theory of the Coulomb anomaly , 1997 .

[23]  Electron Addition and Excitation Spectra of Individual Single-wall Carbon Nanotubes , 2000 .

[24]  Leon Balents,et al.  COULOMB INTERACTIONS AND MESOSCOPIC EFFECTS IN CARBON NANOTUBES , 1997 .

[25]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[26]  E. Anderson,et al.  Scanned probe microscopy of electronic transport in carbon nanotubes. , 2000, Physical review letters.

[27]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[28]  E. J. Mele,et al.  Electronic structure of carbon nanotube ropes , 2000 .

[29]  Johannes Voit,et al.  One-dimensional Fermi liquids , 1995, cond-mat/9510014.

[30]  Langer,et al.  Quantum transport in a multiwalled carbon nanotube. , 1996, Physical review letters.

[31]  Thomas Nussbaumer,et al.  Aharonov–Bohm oscillations in carbon nanotubes , 1999, Nature.

[32]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[33]  Martel,et al.  Intertube coupling in ropes of single-wall carbon nanotubes , 2000, Physical review letters.

[34]  C. Quate,et al.  Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes , 1999 .

[35]  Hertel,et al.  Electron-phonon interaction in single-wall carbon nanotubes: A time-domain study , 2000, Physical review letters.

[36]  S. Tans,et al.  Molecular transistors: Potential modulations along carbon nanotubes , 2000, Nature.

[37]  Steven G. Louie,et al.  Disorder, Pseudospins, and Backscattering in Carbon Nanotubes , 1999 .

[38]  Michael Tinkham,et al.  Introduction to mesoscopic physics , 1997 .

[39]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[40]  P. Avouris,et al.  Ring Formation in Single-Wall Carbon Nanotubes , 1999 .

[41]  P. Eklund,et al.  Giant thermopower in carbon nanotubes: A one-dimensional Kondo system , 1999 .

[42]  Hongjie Dai,et al.  Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters , 2000 .

[43]  Marcus,et al.  Gate-Controlled Superconducting Proximity Effect in Carbon Nanotubes. , 1999, Science.

[44]  S. Datta,et al.  Coupling of Carbon Nanotubes to Metallic Contacts , 1999, cond-mat/9907357.

[45]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[46]  J. Nagy,et al.  Structural and electronic properties of bent carbon nanotubes , 1995 .

[47]  Spin configurations of a carbon nanotube in a nonuniform external potential , 1999, Physical review letters.

[48]  Boris L. Altshuler,et al.  Interaction Effects in Disordered Fermi Systems in Two Dimensions , 1980 .

[49]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[50]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[51]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[52]  Benedict,et al.  Quantum conductance of carbon nanotubes with defects. , 1996, Physical review. B, Condensed matter.

[53]  Spin splitting and even-odd effects in carbon nanotubes , 1998, cond-mat/9804154.

[54]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[55]  Tsuneya Ando,et al.  Impurity Scattering in Carbon Nanotubes Absence of Back Scattering , 1998 .

[56]  G. Bergmann,et al.  Weak localization in thin films: a time-of-flight experiment with conduction electrons , 1984 .

[57]  K. Harigaya Local Non-Fermi Liquid Theory of Magnetic Impurity Effects in Metallic Carbon Nanotubes , 2000 .

[58]  Electrical and Mechanical Properties of Twisted Carbon Nanotubes , 1999, cond-mat/9904411.

[59]  Odintsov Schottky barriers in carbon nanotube heterojunctions , 2000, Physical review letters.

[60]  Jacques Lefebvre,et al.  SINGLE-WALL CARBON NANOTUBE CIRCUITS ASSEMBLED WITH AN ATOMIC FORCE MICROSCOPE , 1999 .

[61]  M. Fuhrer,et al.  Localization in single-walled carbon nanotubes , 1998 .

[62]  Subband Population in a Single-Wall Carbon Nanotube Diode , 1999, cond-mat/9908109.

[63]  Phaedon Avouris,et al.  The effect of structural distortions on the electronic structure of carbon nanotubes , 1998 .

[64]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[65]  M. Dresselhaus,et al.  Tunneling conductance of connected carbon nanotubes. , 1996, Physical review. B, Condensed matter.

[66]  Volkov,et al.  Supercurrents through single-walled carbon nanotubes , 1999, Science.

[67]  Alexey Bezryadin,et al.  MULTIPROBE TRANSPORT EXPERIMENTS ON INDIVIDUAL SINGLE-WALL CARBON NANOTUBES , 1998 .

[68]  Cees Dekker,et al.  Electron–electron correlations in carbon nanotubes , 1998, Nature.