Phase-selective entrainment of nonlinear oscillator ensembles

The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups into spatiotemporal patterns with multiple phase clusters. The experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.

[1]  J. D. Hunter,et al.  Amplitude and frequency dependence of spike timing: implications for dynamic regulation. , 2003, Journal of neurophysiology.

[2]  E. Izhikevich,et al.  Weakly connected neural networks , 1997 .

[3]  Bard Ermentrout,et al.  Type I Membranes, Phase Resetting Curves, and Synchrony , 1996, Neural Computation.

[4]  Jr-Shin Li,et al.  Optimal entrainment of neural oscillator ensembles , 2012, Journal of neural engineering.

[5]  N. Khaneja,et al.  Control of inhomogeneous quantum ensembles , 2006 .

[6]  P. McClintock Synchronization:a universal concept in nonlinear science , 2003 .

[7]  Irving R. Epstein,et al.  An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos , 1998 .

[8]  John L Hudson,et al.  Emerging Coherence in a Population of Chemical Oscillators , 2002, Science.

[9]  Jr-Shin Li,et al.  Optimal design of minimum-power stimuli for phase models of neuron oscillators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Peter A. Tass,et al.  A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations , 2003, Biological Cybernetics.

[11]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[12]  Jr-Shin Li,et al.  Control and Synchronization of Neuron Ensembles , 2011, IEEE Transactions on Automatic Control.

[13]  M. Rosenblum,et al.  Controlling synchronization in an ensemble of globally coupled oscillators. , 2004, Physical review letters.

[14]  Jr-Shin Li,et al.  Optimal Subharmonic Entrainment of Weakly Forced Nonlinear Oscillators , 2014, SIAM J. Appl. Dyn. Syst..

[15]  E. Izhikevich,et al.  Oscillatory Neurocomputers with Dynamic Connectivity , 1999 .

[16]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[17]  Naomi Ehrich Leonard,et al.  Stabilization of Planar Collective Motion: All-to-All Communication , 2007, IEEE Transactions on Automatic Control.

[18]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[19]  Ruth F. Curtain,et al.  Proceedings of the 48th IEEE Conference on Decision and Control, CDC 2009, combined withe the 28th Chinese Control Conference, December 16-18, 2009, Shanghai, China , 2009, CDC.

[20]  A. Goldbeter,et al.  Toward a detailed computational model for the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Richard E. Kronauer,et al.  Spectral Responses of the Human Circadian System Depend on the Irradiance and Duration of Exposure to Light , 2010, Science Translational Medicine.

[22]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[23]  Hiroshi Kori,et al.  Engineering Complex Dynamical Structures: Sequential Patterns and Desynchronization , 2007, Science.

[24]  I. Kiss,et al.  Optimal waveform for fast entrainment of weakly forced nonlinear oscillators. , 2013, Physical review letters.

[25]  Marc T. M. Koper,et al.  The theory of electrochemical instabilities , 1992 .

[26]  L. Glass Synchronization and rhythmic processes in physiology , 2001, Nature.

[27]  Eugene M. Izhikevich,et al.  “Subcritical Elliptic Bursting of Bautin Type ” (Izhikevich (2000b)). The following , 2022 .

[28]  Yoji Kawamura,et al.  Phase-Reduction Approach to Synchronization of Spatiotemporal Rhythms in Reaction-Diffusion Systems , 2014, 1406.0274.

[29]  Florian Dörfler,et al.  Synchronization in complex networks of phase oscillators: A survey , 2014, Autom..

[30]  Roger Weber,et al.  Tools for understanding and optimizing robotic gait training. , 2006, Journal of rehabilitation research and development.

[31]  S H Strogatz,et al.  Human sleep and circadian rhythms: a simple model based on two coupled oscillators , 1987, Journal of mathematical biology.

[32]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[33]  All-to-All Communication , 2011 .

[34]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[35]  A. Winfree The geometry of biological time , 1991 .

[36]  Peter A Tass,et al.  Desynchronization of coupled electrochemical oscillators with pulse stimulations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Hiroshi Kori,et al.  Synchronization engineering: theoretical framework and application to dynamical clustering. , 2008, Chaos.

[38]  L. Schimansky-Geier,et al.  Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence. Berlin-Heidelberg-New York-Tokyo, Springer-Verlag 1984. VIII, 156 S., 41 Abb., DM 79,—. US $ 28.80. ISBN 3-540-13322-4 (Springer Series in Synergetics 19) , 1986 .

[39]  F. Bullo,et al.  Synchronization in complex oscillator networks and smart grids , 2012, Proceedings of the National Academy of Sciences.

[40]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[41]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[42]  Leonidas D. Iasemidis,et al.  Control of Synchronization of Brain Dynamics leads to Control of Epileptic Seizures in Rodents , 2009, Int. J. Neural Syst..

[43]  Burkhard Luy,et al.  Pattern pulses: design of arbitrary excitation profiles as a function of pulse amplitude and offset. , 2005, Journal of magnetic resonance.

[44]  Gábor Orosz,et al.  Decomposition of Nonlinear Delayed Networks around Cluster States with Applications to Neurodynamics , 2014, SIAM J. Appl. Dyn. Syst..

[45]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[46]  Jr-Shin Li,et al.  Constrained charge-balanced minimum-power controls for spiking neuron oscillators , 2011, Syst. Control. Lett..

[47]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[48]  L Glass,et al.  Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias , 1982, Journal of mathematical biology.

[49]  Eric T. Shea-Brown,et al.  Optimal Inputs for Phase Models of Spiking Neurons , 2006 .