Block Factor-Width-Two Matrices and Their Applications to Semidefinite and Sum-of-Squares Optimization

Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In this article, we introduce a new notion of block factor-width-two matrices and build a new hierarchy of inner and outer approximations of the cone of positive semidefinite (PSD) matrices. This notion is a block extension of the standard factor-width-two matrices, and allows for an improved inner-approximation of the PSD cone. In the context of SOS optimization, this leads to a block extension of the scaled diagonally dominant sum-of-squares (SDSOS) polynomials. By varying a matrix partition, the notion of block factor-width-two matrices can balance a tradeoff between the computation scalability and solution quality for solving semidefinite and SOS optimization problems. Numerical experiments on a range of large-scale instances confirm our theoretical findings.

[1]  Antonis Papachristodoulou,et al.  Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization , 2021, Annu. Rev. Control..

[2]  Santanu S. Dey,et al.  Sparse PSD approximation of the PSD cone , 2020, Math. Program..

[3]  Amir Ali Ahmadi,et al.  A Survey of Recent Scalability Improvements for Semidefinite Programming with Applications in Machine Learning, Control, and Robotics , 2019, Annu. Rev. Control. Robotics Auton. Syst..

[4]  Yang Zheng,et al.  Block Factor-Width-Two Matrices in Semidefinite Programming , 2019, 2019 18th European Control Conference (ECC).

[5]  Yang Zheng,et al.  Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials , 2018, 2019 American Control Conference (ACC).

[6]  Yang Zheng,et al.  Decomposition and Completion of Sum-of-Squares Matrices , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[7]  Yang Zheng,et al.  Scalable Design of Structured Controllers Using Chordal Decomposition , 2018, IEEE Transactions on Automatic Control.

[8]  Yang Zheng,et al.  Block-diagonal solutions to Lyapunov inequalities and generalisations of diagonal dominance , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[9]  Yang Zheng,et al.  Fast ADMM for Sum-of-Squares Programs Using Partial Orthogonality , 2017, IEEE Transactions on Automatic Control.

[10]  Yang Zheng,et al.  Chordal decomposition in operator-splitting methods for sparse semidefinite programs , 2017, Mathematical Programming.

[11]  Amir Ali Ahmadi,et al.  DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization , 2017, SIAM J. Appl. Algebra Geom..

[12]  Jean B. Lasserre,et al.  Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity , 2016, Mathematical Programming Computation.

[13]  James Anderson,et al.  Region of Attraction Estimation Using Invariant Sets and Rational Lyapunov Functions , 2016, Autom..

[14]  Deqing Huang,et al.  Bounds for Deterministic and Stochastic Dynamical Systems using Sum-of-Squares Optimization , 2015, SIAM J. Appl. Dyn. Syst..

[15]  Amir Ali Ahmadi,et al.  DC decomposition of nonconvex polynomials with algebraic techniques , 2015, Math. Program..

[16]  Amir Ali Ahmadi,et al.  Sum of Squares Basis Pursuit with Linear and Second Order Cone Programming , 2015, ArXiv.

[17]  Antonis Papachristodoulou,et al.  Advances in computational Lyapunov analysis using sum-of-squares programming , 2015 .

[18]  Yinyu Ye,et al.  A homogeneous interior-point algorithm for nonsymmetric convex conic optimization , 2014, Mathematical Programming.

[19]  Martin S. Andersen,et al.  Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..

[20]  Igor Mezic,et al.  Global Stability Analysis Using the Eigenfunctions of the Koopman Operator , 2014, IEEE Transactions on Automatic Control.

[21]  Kim-Chuan Toh,et al.  SDPNAL$$+$$+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints , 2014, Math. Program. Comput..

[22]  Renato D. C. Monteiro,et al.  A first-order block-decomposition method for solving two-easy-block structured semidefinite programs , 2014, Math. Program. Comput..

[23]  Stephen P. Boyd,et al.  Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding , 2013, Journal of Optimization Theory and Applications.

[24]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[25]  Yurii Nesterov,et al.  Towards non-symmetric conic optimization , 2012, Optim. Methods Softw..

[26]  Didier Henrion,et al.  Convex Computation of the Region of Attraction of Polynomial Control Systems , 2012, IEEE Transactions on Automatic Control.

[27]  Joachim Dahl,et al.  Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones , 2010, Math. Program. Comput..

[28]  Etienne de Klerk,et al.  Exploiting special structure in semidefinite programming: A survey of theory and applications , 2010, Eur. J. Oper. Res..

[29]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[30]  Etienne de Klerk,et al.  A new library of structured semidefinite programming instances , 2009, Optim. Methods Softw..

[31]  Michael Stingl,et al.  PENNON: A code for convex nonlinear and semidefinite programming , 2003, Optim. Methods Softw..

[32]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[33]  A. Papachristodoulou,et al.  On the construction of Lyapunov functions using the sum of squares decomposition , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[34]  P. Parrilo,et al.  Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.

[35]  Kazuo Murota,et al.  Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..

[36]  L. Rodman,et al.  Positive semidefinite matrices with a given sparsity pattern , 1988 .

[37]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[38]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[39]  Alain Blanchard,et al.  Phase-Locked Loops: Application to Coherent Receiver Design , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[40]  Yang Zheng,et al.  Chordal sparsity in control and optimization of large-scale systems , 2019 .

[41]  M. Overton,et al.  Semidefinite programming , 2002, Eur. J. Oper. Res..

[42]  G. Chesi Domain of Attraction: Analysis and Control via SOS Programming , 2011 .

[43]  Ufuk Topcu,et al.  Local stability analysis using simulations and sum-of-squares programming , 2008, Autom..

[44]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[45]  Doron Chen,et al.  On Factor Width and Symmetric H-matrices , 2005 .

[46]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[47]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[48]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[49]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[50]  Blair J R S,et al.  Introduction to Chordal Graphs and Clique Trees, in Graph Theory and Sparse Matrix Computation , 1997 .

[51]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[52]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[53]  A. Packard,et al.  Searching for Control Lyapunov Functions using Sums of Squares Programming , 2022 .