Householder bidiagonalization on parallel computers with dynamic ring architecture
暂无分享,去创建一个
[1] John C. Nash,et al. A One-Sided Transformation Method for the Singular Value Decomposition and Algebraic Eigenproblem , 1975, Comput. J..
[2] A. Steinhardt,et al. Householder transforms in signal processing , 1988, IEEE ASSP Magazine.
[3] W. Daniel Hillis,et al. The CM-5 Connection Machine: a scalable supercomputer , 1993, CACM.
[4] Paul Van Dooren,et al. On the quadratic convergence of Kogbetliantz's algorithm for computing the singular value decomposition , 1986 .
[5] Michael W. Berry,et al. Multiprocessor Jacobi Algorithms for Dense Symmetric Eigenvalue and Singular Value Decompositions , 1986, ICPP.
[6] K.J.R. Liu,et al. Recursive LS filtering using block Householder transformations , 1990, International Conference on Acoustics, Speech, and Signal Processing.
[7] M. Hestenes. Inversion of Matrices by Biorthogonalization and Related Results , 1958 .
[8] Gene H. Golub,et al. Matrix computations , 1983 .
[9] Eric A. Brewer,et al. How to get good performance from the CM-5 data network , 1994, Proceedings of 8th International Parallel Processing Symposium.
[10] F. Luk. A Triangular Processor Array for Computing the Singular Value Decomposition , 1984 .
[11] R. Brent,et al. Computation of the Singular Value Decomposition Using Mesh-Connected Processors , 1983 .
[12] H. T. Kung. Memory requirements for balanced computer architectures , 1986, ISCA '86.
[13] H. T. Kung. Memory requirements for balanced computer architectures , 1986, ISCA '86.