Radial basis function approximation methods with extended precision floating point arithmetic

Radial basis function (RBF) methods that employ infinitely differentiable basis functions featuring a shape parameter are theoretically spectrally accurate methods for scattered data interpolation and for solving partial differential equations. It is also theoretically known that RBF methods are most accurate when the linear systems associated with the methods are extremely ill-conditioned. This often prevents the RBF methods from realizing spectral accuracy in applications. In this work we examine how extended precision floating point arithmetic can be used to improve the accuracy of RBF methods in an efficient manner. RBF methods using extended precision are compared to algorithms that evaluate RBF methods by bypassing the solution of the ill-conditioned linear systems.

[1]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[2]  Tobin A. Driscoll,et al.  Eigenvalue stability of radial basis function discretizations for time-dependent problems , 2006, Comput. Math. Appl..

[3]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[4]  James Demmel,et al.  Design, implementation and testing of extended and mixed precision BLAS , 2000, TOMS.

[5]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[6]  David H. Bailey,et al.  High-Precision Computation and Mathematical Physics , 2009 .

[7]  Michael L. Overton,et al.  Numerical Computing with IEEE Floating Point Arithmetic , 2001 .

[8]  S. Sarra A numerical study of the accuracy and stability of symmetric and asymmetric RBF collocation methods for hyperbolic PDEs , 2008 .

[9]  Elisabeth Larsson,et al.  Stable computations with Gaussian radial basis functions in 2-D , 2009 .

[10]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[11]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[12]  Robert Schaback,et al.  On unsymmetric collocation by radial basis functions , 2001, Appl. Math. Comput..

[13]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[14]  W. Madych,et al.  Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .

[15]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[16]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[17]  S. Sarra,et al.  Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations , 2009 .

[18]  Bengt Fornberg,et al.  A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..

[19]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[20]  A. Cheng,et al.  Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method , 2007 .

[21]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .