Actomyosin-based Self-organization of cell internalization during C. elegans gastrulation

[1]  Anthony Santella,et al.  Actomyosin-based Self-organization of cell internalization during C. elegans gastrulation , 2012, BMC Biology.

[2]  Jean-Léon Maître,et al.  Adhesion Functions in Cell Sorting by Mechanically Coupling the Cortices of Adhering Cells , 2012, Science.

[3]  V. Isaeva Self-organization in biological systems , 2012, Biology Bulletin.

[4]  Bob Goldstein,et al.  Triggering a Cell Shape Change by Exploiting Preexisting Actomyosin Contractions , 2012, Science.

[5]  Adam C. Sokolow,et al.  Cell ingression and apical shape oscillations during dorsal closure in Drosophila. , 2012, Biophysical journal.

[6]  Eric H Davidson,et al.  Evolutionary bioscience as regulatory systems biology. , 2011, Developmental biology.

[7]  J. Tinevez,et al.  Polar actomyosin contractility destabilizes the position of the cytokinetic furrow , 2011, Nature.

[8]  T. Ando,et al.  Chirality in Planar Cell Shape Contributes to Left-Right Asymmetric Epithelial Morphogenesis , 2011, Science.

[9]  Radhika Nagpal,et al.  Control of the Mitotic Cleavage Plane by Local Epithelial Topology , 2011, Cell.

[10]  Jessica R. Harrell,et al.  Internalization of multiple cells during C. elegans gastrulation depends on common cytoskeletal mechanisms but different cell polarity and cell fate regulators. , 2011, Developmental biology.

[11]  Pierre-François Lenne,et al.  Planar polarized actomyosin contractile flows control epithelial junction remodelling , 2010, Nature.

[12]  D. Montell,et al.  Tissue elongation requires oscillating contractions of a basal actomyosin network , 2010, Nature Cell Biology.

[13]  S. Grill,et al.  Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows , 2010, Nature.

[14]  Zhirong Bao,et al.  Chiral forces organize left-right patterning in C. elegans by uncoupling midline and anteroposterior axis. , 2010, Developmental cell.

[15]  C. Heisenberg,et al.  Spatial organization of adhesion: force‐dependent regulation and function in tissue morphogenesis , 2010, The EMBO journal.

[16]  Theresa M. Grana,et al.  SAX-7/L1CAM and HMR-1/cadherin function redundantly in blastomere compaction and non-muscle myosin accumulation during Caenorhabditis elegans gastrulation. , 2010, Developmental biology.

[17]  Adam C. Martin Pulsation and stabilization: contractile forces that underlie morphogenesis. , 2010, Developmental biology.

[18]  Jennifer A Zallen,et al.  Myosin II dynamics are regulated by tension in intercalating cells. , 2009, Developmental cell.

[19]  J. Tinevez,et al.  Role of cortical tension in bleb growth , 2009, Proceedings of the National Academy of Sciences.

[20]  B. Goldstein,et al.  In vivo roles for Arp2/3 in cortical actin organization during C. elegans gastrulation , 2009, Journal of Cell Science.

[21]  F. Piano,et al.  Evolution of early embryogenesis in rhabditid nematodes. , 2009, Developmental biology.

[22]  M. Sheetz,et al.  Force propagation across cells: mechanical coherence of dynamic cytoskeletons. , 2009, Current opinion in cell biology.

[23]  Eric F. Wieschaus,et al.  Pulsed contractions of an actin–myosin network drive apical constriction , 2009, Nature.

[24]  Guillaume Charras,et al.  Blebs lead the way: how to migrate without lamellipodia , 2008, Nature Reviews Molecular Cell Biology.

[25]  Dorian C. Anderson,et al.  Polarization of the C. elegans Embryo by RhoGAP-Mediated Exclusion of PAR-6 from Cell Contacts , 2008, Science.

[26]  O. Fackler,et al.  Cell motility through plasma membrane blebbing , 2008, The Journal of cell biology.

[27]  J. T. Blankenship,et al.  Multicellular dynamics during epithelial elongation. , 2008, Seminars in cell & developmental biology.

[28]  R. Schnabel,et al.  A Posterior Centre Establishes and Maintains Polarity of the Caenorhabditis elegans Embryo by a Wnt-Dependent Relay Mechanism , 2006, PLoS biology.

[29]  John Isaac Murray,et al.  The lineaging of fluorescently-labeled Caenorhabditis elegans embryos with StarryNite and AceTree , 2006, Nature Protocols.

[30]  Bob Goldstein,et al.  Wnt/Frizzled Signaling Controls C. elegans Gastrulation by Activating Actomyosin Contractility , 2006, Current Biology.

[31]  Jennifer A Zallen,et al.  Multicellular rosette formation links planar cell polarity to tissue morphogenesis. , 2006, Developmental cell.

[32]  R. Schnabel,et al.  Global cell sorting is mediated by local cell-cell interactions in the C. elegans embryo. , 2006, Developmental biology.

[33]  Hans Meinhardt,et al.  Global cell sorting in the C. elegans embryo defines a new mechanism for pattern formation. , 2006, Developmental biology.

[34]  Zhirong Bao,et al.  AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis , 2006, BMC Bioinformatics.

[35]  R. Waterston,et al.  Automated cell lineage tracing in Caenorhabditis elegans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Bob Goldstein,et al.  Gastrulation in C. elegans. , 2005, WormBook : the online review of C. elegans biology.

[37]  Michael Herman Faculty Opinions recommendation of C. elegans MOM-5/frizzled functions in MOM-2/Wnt-independent cell polarity and is localized asymmetrically prior to cell division. , 2005 .

[38]  M. Leptin Gastrulation movements: the logic and the nuts and bolts. , 2005, Developmental cell.

[39]  J. Priess,et al.  C. elegans MOM-5/Frizzled Functions in MOM-2/Wnt-Independent Cell Polarity and Is Localized Asymmetrically prior to Cell Division , 2004, Current Biology.

[40]  J. Priess,et al.  Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. , 2004, Developmental cell.

[41]  J. Priess,et al.  C. elegans PAR-3 and PAR-6 are required for apicobasal asymmetries associated with cell adhesion and gastrulation , 2003, Development.

[42]  Bob Goldstein,et al.  Mechanisms of cell positioning during C. elegans gastrulation , 2003, Development.

[43]  George N. Reeke,et al.  BOOK REVIEW: "SELF-ORGANIZATION IN BIOLOGICAL SYSTEMS" BY S. CAMAZINE, J. DENEUBOURG, N. R. FRANKS, J. SNEYD, G. THERAULAZ AND E. BONABEAU , 2002 .

[44]  J. Priess,et al.  Cell polarity and gastrulation in C. elegans. , 2002, Development.

[45]  M. Labouesse,et al.  Assembly of C. elegans apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. , 2001, Journal of cell science.

[46]  R. Lin,et al.  POP-1 and Anterior–Posterior Fate Decisions in C. elegans Embryos , 1998, Cell.

[47]  T. Kaletta,et al.  Binary specification of the embryonic lineage in Caenorhabditis elegans , 1997, Nature.

[48]  Bruce Bowerman,et al.  Wnt Signaling Polarizes an Early C. elegans Blastomere to Distinguish Endoderm from Mesoderm , 1997, Cell.

[49]  C. Mello,et al.  Wnt Signaling and an APC-Related Gene Specify Endoderm in Early C. elegans Embryos , 1997, Cell.

[50]  J Hardin,et al.  An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. , 1997, Development.

[51]  H. Schnabel,et al.  Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. , 1997, Developmental biology.

[52]  R. Schnabel,et al.  Cell autonomous expression of perlecan and plasticity of cell shape in embryonic muscle of Caenorhabditis elegans. , 1996, Developmental biology.

[53]  R. Schnabel,et al.  Establishment of left-right asymmetry in the Caenorhabditis elegans embryo: a multistep process involving a series of inductive events. , 1995, Development.

[54]  G. Oster,et al.  How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. , 1995, Development.

[55]  J. Cooper,et al.  Transient localized accumulation of actin in Caenorhabditis elegans blastomeres with oriented asymmetric divisions. , 1994, Development.

[56]  B. Goldstein Induction of gut in Caenorhabditis elegans embryos , 1992, Nature.

[57]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[58]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[59]  J. Huxley,et al.  The Cell in Development and Heredity , 1925, Nature.

[60]  Erez Raz,et al.  A role for Rho GTPases and cell–cell adhesion in single-cell motility in vivo , 2010, Nature Cell Biology.

[61]  A. Jacinto,et al.  Epithelial resealing. , 2009, The International journal of developmental biology.

[62]  BMC Biology , 2004 .